首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
为研究不同温度条件下沥青路面的实际动力响应规律,铺设了3种典型沥青路面试验路,通过落锤式弯沉仪(FWD)开展了温度对路表动态弯沉盆特性的影响作用分析,并通过动态应变传感器获取了不同温度下FWD荷载产生的沥青层底应变响应。研究结果表明:路表动态弯沉盆的各测点弯沉值随径向距离的增加逐渐减小,随荷载水平的增加逐渐增大,随路面温度的增加显著增大;随着温度的提高,路表动态弯沉盆的影响范围显著减小;通过回归分析方法确定沥青层底应变响应的温度修正系数,有助于实现实际温度下的应变响应向标准参照温度的转换。  相似文献   

2.
以长寿命沥青路面为对象,在双向循环荷载作用下,对其路面所受剪应力进行分析研究,结果表明,工况滞回曲线均呈近似椭圆形,沥青路面应变值在对应循环位移幅值处,随循环次数增加而增大。在循环加载结束后,工况C2、C3、C4沥青路面应变值增长率分别为86%、80%、52%,循环位移幅值越大,沥青路面应变值增长率越小。汽车在减速和加速行驶时,水平力施加明显改变了沥青路面上面层顶部和上面层层底的最大应变值,路面结构内部交变应力场造成路面发生疲劳破坏。路面下面层层底在竖直方向应变值所受影响最大。车辆在减速和加速过程中,下面层层底横向的应变随着水平荷载的增加而增加,在面层里,随着深度的增加,横向应变也随之增加。随着水平荷载的增加,下面层层底的纵向拉应变的最大值变化不明显,横向应变不断增加,在面层里,横向应变随着深度的增加而不断增加,在下面层底部达到了最大值。  相似文献   

3.
根据半刚性基层沥青路面实际应用,采用Ansys分析软件,分析基层材料在完整、松散及收缩裂缝状态下路面荷载的响应、路面结构层的应力、应变和位移情况。分析表明:1)基层材料松散对面层层底拉应变,路面弯沉及路基顶的压应变影响显著;2)横向干缩裂缝可改变沥青面层层底最大拉应变方向,对层底拉应变影响较显著。分析结果对减少半刚性基层收缩裂缝,提高路面使用寿命有一定理论指导作用。  相似文献   

4.
为研究行车荷载下不同沥青路面结构的动力响应,验证、完善我国沥青路面设计方法,在两种倒装式和传统半刚性基层沥青路面结构内部埋设沥青应变计、土压力计和垂直大变形应变计等传感元件,以单后轴货车为行车荷载,现场开展了不同轴重、不同行车速度及制动工况下3种路面结构的动力响应测试。以沥青层层底纵向应变与横向应变、路基顶面土压力和过渡层底部竖向压应力与竖向位移为评价指标,分析了不同沥青路面结构的动力响应规律。结果表明:随行车速度增加,各路面结构沥青层层底应变、过渡层竖向压应力与竖向位移均明显减小;从拉应变循环幅值看,半刚性基层结构随车速的变化更敏感;相同轴重和车速下半刚性基层结构路基顶面的压应力远小于倒装式结构,半刚性基层结构荷载扩散能力更优;相同车速下,3种路面结构沥青层层底纵向应变循环幅值和路基顶土压力均随轴重增加而增大,且半刚性基层结构的增幅相对更大,即半刚性基层结构对荷载更敏感,倒装式结构对荷载适应性更强;车辆制动会引起沥青层层底残余应变、纵(横)向应变与应变循环幅值大幅增加,频繁制动易引起路面车辙变形和加速路面沥青层疲劳破坏。  相似文献   

5.
基于加速加载试验的半刚性基层沥青路面动力响应   总被引:2,自引:0,他引:2  
为了了解移动车辆荷载作用下半刚性基层沥青路面结构动力响应规律,修筑足尺试验场,采用置入式应变传感器,检测加速加载设备在车轮荷载作用下的面层底部动力响应,研究了面层底部横向分布以及轴重和温度对路面结构动力响应的影响。结果表明:移动车轮荷载下,面层底部纵向弯拉应变呈拉压应变交变状态,荷载位置仅影响其数值大小;横向弯拉应变比较复杂,胎冠下部呈现拉应变状态,2个轮胎之间及轮胎外侧呈现压应变状态,胎肩位置呈现拉压应变交变状态;面层底部弯拉应变无法充分反映超载车辆对路面的破坏作用;温度对路面结构的动力响应影响显著,30℃、40℃和50℃下沥青路面动力响应分别为常温状态下的3倍、8.9倍和13.3倍。  相似文献   

6.
应用有限元软件ABAQUS建立轮胎/路面结构模型,研究轮胎与路面的接触印迹及随机荷载下沥青路面三维结构应力、应变变化特征。结果表明:沥青路面竖向、横向、纵向应力应变随荷载的非线性增加而非线性增加,随路面深度增加应力应变逐渐减小,在沥青路面的上面层和中面层出现应力应变集中现象。在荷载作用分析点,竖向、横向及纵向应力最大应力值出现在上面层,竖向应力最大,横向应力次之,纵向应力最小;竖向和横向应变最大值出现在上面层,纵向应变最大值出现在上-中面层,纵向方向反复的拉压变形,可能是导致路面轮迹带材料产生疲劳损坏的原因。沥青路面结构应力应变受温度变化、荷载等多种因素影响,残余应变恢复时间延迟体现沥青材料的黏弹性特征。  相似文献   

7.
为探讨不同结构沥青路面在静载作用下的力学性能,基于ANSYS有限元理论,拟定3种类型橡胶沥青路面结构并建立静力学有限元模型,分别针对沥青层层底拉应变、沥青层剪应力和半刚性基层拉应力进行数值分析。结果表明,3种结构路面在荷载作用下沥青层第一层层底均出现压应变,路面深度增至临近第二层层底时逐渐转变成拉应变;沥青层层底发生拉应变主要是由于沥青层模量和基层类型的影响;3种结构沥青路面层剪应力均随着路面深度的增加呈现先增后减的趋势。  相似文献   

8.
建立沥青路面结构有限元模型,计算沥青路面结构在一天内温度连续变化条件下温度场分布,在此基础上进行温度与移动荷载耦合,分析沥青路面结构在温度-移动荷载耦合作用下的力学响应。结果表明,沥青面层温度场在一天内的变化呈现先减小、后迅速增大、再减小并趋于缓和的趋势,基层以下路面结构层温度几乎不发生变化;在温度-移动荷载耦合作用下,路表最大竖向位移比不考虑温度作用时最大竖向位移增大8.60%,沥青层层底拉应变比不考虑温度作用时层底拉应变增大176.26%;车辆速度和轴重影响沥青路面的力学响应,随着荷载移动速度的增大,路表竖向位移减小、竖向压应力增大,随着轮胎接地压强的增加,路表横向压应力、竖向压应力和纵向压应力都增大。  相似文献   

9.
在旧路升级改造中,新旧路面材质、模量等参数相差较大,旧路面自身也有不同程度的老化,使得层间更是环节薄弱,层间的抗剪切问题也更加复杂,分析旧沥青路面加铺层力学响应,为合理设计路面结构提供参考。文章应用ABAQUS软件计算了不同旧路模量和层间接触状况下的弯沉、加铺层的层底拉应力、层底横向剪应力和层底纵向剪应力,并分析了其变化规律。结果表明:旧路模量主要影响加铺层层底拉应力,对新旧路层间剪应力和弯沉的影响比较小;层间粘结状况对加铺层层底拉应力和新旧路层间剪应力都有很大的影响,对路面弯沉的影响比较小,良好的层间粘结可以减小路面弯沉和加铺层层底拉应力,并减小路面滑移。  相似文献   

10.
分别从路表弯沉值、承重层、设计使用寿命和路面分析年限等方面分析了现行公路沥青路面设计方法存在的不足;研究了复合基层沥青路面损坏的主要类型,提出了适合我国复合基层沥青路面设计控制指标与标准。分析了主要设计控制指标沥青层层底拉应变、半刚性层底部拉应力和辅助设计控制指标路表弯沉值、路基顶面压应变的控制标准,提出了基于疲劳、车辙和弯沉的复合基层沥青路面设计方法。结果表明:复合基层沥青路面主要设计控制指标与标准为:沥青层层底拉应变εr≤65με、半刚性层底部拉应力σm≤σR;辅助设计控制指标与标准:路表弯沉值l s≤(45H F-210)N-0.2e、路基顶面压应变εz≤180με。  相似文献   

11.
为了掌握重型移动车辆荷载作用后橡胶沥青路面的力学响应,文章首先基于路面平整度车辆振动因素选取了1/4动力学模型作为重载车辆模型;而后,基于路面结构、边界条件、材料参数等条件,建立在非均布移动重荷载作用下,橡胶沥青路面的三维瞬态动力学有限元模型;最后,基于有限元模型给出橡胶沥青路面在移动重型车辆荷载作用下的动力响应时程变化规律和空间分布规律。结果表明,橡胶沥青路面结构的力学响应呈波动性及正负交替变换,横向、竖向的应力应变先迅速增加后减小,荷载离开后留有一定的残存变形,下部应变比上部应变恢复得快;纵向应力始终为负,且在中下面层中,移动车辆荷载出现了微小波动;橡胶沥青路面吸收应力应变的能力比普通沥青路面强。  相似文献   

12.
通过采用钻芯和注浆开挖等方法对沥青路面结构层层间粘结现状进行调查,发现路面结构层层间非连续现象普遍存在,有病害位置层间粘结状况明显较无病害位置差,这在面层-基层层间与基层-底基层层间尤为明显。提出采用FWD弯沉盆参数对沥青路面结构层层间粘结状况进行评价,通过数值计算发现弯沉盆参数F1/F2值与路面面层-基层层间摩擦系数具有良好的相关关系,并采用数理统计的方法得到路面面层-基层层间粘结状况的评价标准。  相似文献   

13.
泊松比取值对于柔性基层沥青路面结构动力响应的影响是多方面的。为探讨泊松比取值对柔性基层沥青路面结构受力的影响,利用Bisar3.0软件模拟了典型柔性基层沥青路面结构的轮载动力响应,分别对路表弯沉、沥青面层层间拉应力、剪应力及土基顶面压应变进行了计算分析。结果表明:弯沉值随着沥青混合料泊松比的增大而逐渐减小;面层层底拉(压)应力对泊松比的变化较为敏感,中面层尤为明显;沥青混合料泊松比的取值大小对上面层和中面层层内剪应力影响较大,对下面层层内剪应力影响较小;土基顶面压应变随泊松比的增大而逐渐减小。路面设计中应充分考虑泊松比取值对路面结构力学特性的影响。  相似文献   

14.
为研究面-基结合状态对沥青路面的影响,采用Bisar 3.0软件,考虑在季节性变化的条件下,对比分析不同结合状态对长寿命路面、柔性路面及半刚性路面受力状况的影响,并计算了不同控制指标下沥青路面的疲劳寿命。研究结果表明:面-基结合状态的变化对路表弯沉影响相对较小,对层底拉应力、拉应变的影响较大;路表弯沉、基层层底拉应力最大值出现在5月份,沥青层底最大拉应力出现在2、3月份,上、下面层层底拉应变最大值出现在7月份;长寿命结构在以沥青层层底拉应变为控制指标时,疲劳寿命均大于其对应的普通路面结构;柔性基层类长寿命路面及半刚性基层类长寿命路面在设计时应分别以沥青层层底拉应变及基层层底拉应力为控制指标。  相似文献   

15.
祝明  朱俊  刘琦 《公路与汽运》2014,(2):105-108
基于沥青路面多层弹性层状体系建立力学计算模型,对沥青路面结构的应力和应变等力学响应进行计算和分析,得出力学响应的一般变化规则。结果表明,路表弯沉、面层层底拉应力和面层剪应力等路面力学响应随着路面层间状态的失效而趋于不利的受力状态,层间疲劳应特别关注,层间剪应力在路面设计中可作为控制指标或验算指标,有效减少路面层间病害的发生。  相似文献   

16.
魏淑艳  姜炎 《公路工程》2020,(1):126-129,189
以某新建公路工程为背景,运用ABAQUS软件建立路面结构三维模型,针对工程初步设计供选的三种耐久性基层沥青路面结构进行力学响应和疲劳寿命对比分析,得出以下结论:①RCC基层、加强型半刚性基层路面结构的路表弯沉峰值较于倒装式半刚性基层路面要小,故该路面结构的承载能力更优;②RCC基层、加强型半刚性基层和倒装式半刚性基层路面结构的沥青层层底拉应变差距较小,故均具有良好的抗疲劳损伤性能和使用性能;③倒装式半刚性基层路面结构的沥青下面层层底拉应力峰值较小,故抗拉开裂性能较优;④RCC基层沥青路面结构的半刚性基层和底基层的层底拉应力以及疲劳寿命较于其余两种路面结构要小,故RCC基层沥青路面结构的抗疲劳能力、抗拉压性能较优;⑤三种路面结构中RCC基层的各项性能较优,故工程路面结构推荐RCC基层。  相似文献   

17.
与传统有人驾驶货车相比,自动驾驶货车编队具有更为紧凑的队列形式与更快的行驶速度,极大提高了道路通行能力与运输效率,但同时也使得车辆荷载作用特点发生了显著变化,从而影响沥青路面的疲劳寿命。针对现行疲劳寿命预估模型在自动驾驶货车编队行驶场景下适用性不足的问题,以编队荷载作用下的沥青路面结构层底应变波形特征为切入点,建立了面向自动驾驶货车编队的柔性基层沥青路面疲劳寿命预估模型。通过分析375种不同编队荷载工况下的沥青层层底应变波形,发现层底最大拉应变随行驶速度、前后车间距、左右车间距的增大而减小,随单列车辆数的减少而减小;针对波形参数的主成分分析结果表明,编队荷载下的应变波形可以用D、βD-、θ1sμ、θ2sμ、εn共5个相互独立的特征参数进行表达,且该波形特征参数与编队行驶特性参数之间存在不同程度的相关性;依据等效损伤理论计算标准温度(20℃)下柔性基层沥青路面达到疲劳破坏时的编队荷载作用次数,进而提出了基于应变波形特征的沥青路面结构疲劳寿命预估模型。对比仿真结果与模型计算结果发现自动驾驶货车编队场景下...  相似文献   

18.
基于弹性层状体系理论,计算分析了半刚性基层沥青路面半刚性层底拉应变与FWD弯沉盆参数BDI的关系,通过计算回归,建立了相应的拉应变预估公式.预估公式参数敏感性分析表明,在层间连续条件下,对结构层模量、厚度、荷载重量等参数在工程常见范围内的路面结构,所建预估公式均取得了良好的预估精度.  相似文献   

19.
利用有限元软件ABAQUS,建立了考虑轮胎-路面不均匀接触压力分布的半刚性基层沥青路面结构动力响应分析三维有限元模型,并就不同面层-基层层间接触状态对沥青面层结构响应的影响进行了分析。结果表明,不同层间接触状态下,沥青层底应变响应时程曲线的形态一致,但完全连续和非连续状态下应变响应峰值相差较大;实际使用过程中,随着沥青路面面层-基层层间接触状态的衰变,层底弯拉应变会显著增大,易导致面层层底的疲劳开裂。  相似文献   

20.
余乐  吴国雄  何兆益  王建民 《公路》2021,66(11):1-7
山地城市如重庆,具有纵坡大、降雨多的特点,其全透水沥青路面结构型式与平原地区有所不同.为研究荷载作用下山地城市全透水沥青路面结构力学响应情况,借助有限元方法建立全透水沥青路面结构的三维模型,通过改变基层+蓄水层组合厚度、蓄水层模量及土基模量3个因素,分析弯沉、蓄水层层底拉应力和土基顶面压应变的响应情况.结果 表明土基模量对弯沉有显著影响,基层+蓄水层组合厚度对蓄水层层底拉应力和土基顶面压应变有显著影响,因此,可通过增加基层+蓄水层组合厚度和增大土基模量的方式来提高全透水沥青路面的强度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号