首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
随着城市地下空间大力发展,既有隧道与新基坑的交叉位置通常会造成地下连续墙的不连续,引起地下水渗流、挡土能力不足等问题.以上海某地铁车站深基坑开挖工程为例,基于人工冻结法构造复合围护墙,实现加固土体和防水密封的双重效果.结合有限元分析方法模拟得到隧道周边土体温度分布情况,开展现场监测研究"冻结法+地下连续墙"复合围护墙的受力和变形特征.通过计算弯矩来评价冻胀对地下连续墙的不利影响,并提出墙体抵抗负弯矩的加固要求.  相似文献   

2.
以实际工程为例,利用通用有限元软件建立地下连续墙与作用土体的三维实体模型。考虑支护结构与土体之间的协调变形和相互作用,对基坑分步开挖过程中基坑角部位移、墙体土压力、坑底隆起回弹、墙后地表土体沉降变化、地下水位变化及墙体应力分布等进行分析,可为同类工程施工提供参考。  相似文献   

3.
选用某地下连续墙支护的圆形基坑为例,在第一至七层土体开挖施工监测和反演分析的基础上。针对第八层土体开挖阶段地下连续墙支护结构和周围岩土体的拟合反演参数,在依据现场前期勘察和室内土工试验数据进行修正的基础上,进行第九层土体开挖阶段的施工模拟。分析总结模拟结果,将依据反演所得的参数计算的结果与第九次土体开挖阶段监测所得的数据进行对比分析。模拟和对比分析结果表明:地下连续墙混凝土最大环向应力计算值与钢筋应力实测值对应的换算应变比较接近,初步论证理论计算值与实测值吻合较好。竖向应力计算值明显低于环向应力计算值,得到体系以环向受力为主。且无论是从内衬支撑力还是内衬轴力来看,内衬受力水平很低,说明支撑体系主要以地下连续墙受力为主。论证得到地下连续墙各处弯矩均匀,内力以轴力为主,环向内力分布比较均匀。间接证明改思路和方法可作为后续地下连续墙施工监测和预测下一阶段支护结构受力变形特点的方法。  相似文献   

4.
主要对平底隧道和仰拱隧道二者的围岩受力和隧道周围位移进行对比分析,得到以下结论:开挖过程中两种隧道模型最大压应力值存在差别,且上台阶开挖要比下台阶开挖时最大压应力值要大;开挖过程中仰拱隧道的最大拉应力一直略小于平底隧道,说明施加仰拱对围岩整体受力较好;随着隧道开挖步的进行,两种隧道模型均呈现出拱顶沉降和拱底隆起位移增长的趋势,且仰拱隧道拱顶沉降值一直略大于平底隧道,而仰拱隧道拱底隆起值一直略小于平底隧道;两种隧道模型上拱墙竖向沉降基本一致,而仰拱隧道底部隆起位移均小于平底隧道,且仰拱隧道隆起位移最大值要比平底隧道小6. 78%,这与仰拱隧道底部围岩和衬砌的"拱作用"有关。实际工程中应综合考虑各方面进行方案选取。  相似文献   

5.
为了分析深基坑与地铁车站共用地下连续墙影响下车站和隧道连接节点的变形特性,保护地铁线路运营的整体安全,通过现场测试和数值模拟展开研究。根据上海地区深基坑与地铁车站共用地下连续墙工程实例的现场测试数据,分析了开挖施工过程中车站与地铁盾构隧道的竖向位移分布特征,并采用三维数值模型研究了共用地下连续墙深基坑开挖深度、相对位置对车站与隧道节点变形的影响,探讨了车站与隧道节点的曲率半径、相对弯曲的发展变化规律,并判断其安全状态。测试结果与数值分析均表明,车站与隧道节点变形比隧道最大沉降处更加不利;节点的曲率半径随基坑开挖深度的增加而减小,相对弯曲随基坑开挖深度的增加而增加;基坑与车站完全共用地下连续墙或远离隧道时,节点处的曲率半径相对较大。  相似文献   

6.
王雪亮 《隧道建设》2008,28(6):680-684
以Mindlin应力方程为基础,对地下连续墙侧面进行单元划分,推导出地下连续墙侧摩擦力在土体中引起的附加应力公式;对于长宽比较大的地下连续墙,墙端荷载按平面应变问题分析考虑,推导出地下连续墙墙端荷载在土体中引起的的附加应力公式,根据所求得的附加应力,采用分层总和法求解地下连续墙的沉降。  相似文献   

7.
杨春风  王雷 《公路》2012,(4):74-77
为更准确地模拟沥青混凝土路面实际的受力状态,基于弹性层状理论,借助大型有限元分析软件ANSYS建立了沥青混凝土路面三维有限元黏弹性模型,并对其施加非均布垂直荷载和切向摩擦行为的共同影响,分析车辆在匀速行驶时,沥青混凝土路面在不同载重车辆荷载作用下的动力响应.结果表明,最大纵向拉应力位于底基层中部,最大纵向压应力位于沥青混凝土面层.存在一中性层,其上结构主要承受压应力,其下结构主要承受拉应力.中性层位于基层中部附近.最大拉应力为0.031 MPa,远小于容许拉应力0.081 MPa,故路面结构破坏不是脆性破坏引起的,而是与疲劳破坏有很大关系.超载并不是造成路面损坏的唯一因素.  相似文献   

8.
移动模架设计阶段考虑到在其行走过程中对桥墩结构产生一定影响,为分析在实际工程中移动模架行走对桥墩结构作用,以泉州湾跨海大桥A5标段秀涂互通主线桥为依托工程,利用FEA软件对桥墩进行仿真模拟,分析由于变截面移动模架自身重量大在行走过程中对桥墩产生推力的效果,得出秀涂互通主线桥右幅墩号B028-B027浇筑工况移动模架荷载墩位最大,局部最大拉应力应力达到0.874MPa,出现在系梁和桥墩结合部位,虽然小于承台混凝土C40的抗拉强度设计值1.65MPa,钢筋应力最大点出现在系梁底部,远小于HRB335级的钢筋的抗拉强度设计值,处在安全的范围之内,为福建省相关工程实际提供参考。但这仅限于桥墩高度小于17m,当桥墩高度大于17m时,需施工过程中应对桥墩的应力和变形进行监测。  相似文献   

9.
为了研究寒冷地区隧道二次衬砌混凝土结构在环境温度变化情况下的力学状态,基于振弦式混凝土应变计的测试原理,提出温差引起的误差修正公式,并采用数值模拟的方法,对隧道二次衬砌混凝土的温度应力进行了分析。结合陕西省吴堡至子洲段高速公路刘家坪3号隧道现场二次衬砌混凝土应变监测数据,研究了1年内环境温度变化情况下隧道二次衬砌混凝土的结构受力。结果表明:在温度的影响下,混凝土内部在冬季产生了比较大的拉应力,混凝土内侧拱顶产生压应力,其余部位内侧产生拉应力;混凝土外侧拱顶和边墙部位产生了比较大的拉应力,最大值出现在拱顶部位;混凝土的内外侧应力最大值为1.01 MPa,接近C25混凝土的设计抗拉强度1.33 MPa。  相似文献   

10.
地震往往会对桥梁、栈桥等带来不可预估的影响,使用MIDAS有限元软件,通过考虑2种荷载工况,并施加地震反应谱,分别对地震作用下横纵梁内力、贝雷梁弦杆、贝雷梁腹杆等进行分析,得到以下结论:横、纵向分配梁最大拉应力出现在支座位置77 MPa,工况2纵向分配梁最大组合应力18.8 MPa,均小于允许应力值145 MPa;弦杆最大组合应力值为279.7 MPa,大于规定允许应力值210 MPa;地震作用下腹杆的最大组合应力值为185.8 MPa,小于规定允许应力值210 MPa;钢管柱的最大组合应力值为14.2 MPa,小于规定允许应力145 MPa;地震反应下支架位移水平最大位移值为2.70 mm,满足设计要求。  相似文献   

11.
黄福杰  陈浩民  何则干 《城市道桥与防洪》2020,(1):188-190,213,M0021
为确保处于深厚淤泥区的临近地铁基坑在新建基坑开挖支护过程中的安全性.通过有限元软件建立精细的三维计算模型,计算分析地铁基坑对新建基坑开挖、支护的力学响应特征。研究结果表明:开挖完成后,地铁车站基坑位移呈现岀“鼓肚型”,符合连续墙加内支撑基坑支护型式一般的变形规律;新建基坑围护桩最大侧移为24.5 mm,竖向位移为6.54 mm,均小于围护桩位移控制值,说明新建基坑支护体系设计具备合理性;地铁车站基坑围护结构最大位移为12.16 mm,远小于一级基坑位移限值。同时发现其地下连续墙两侧的位移增量不同,右侧(靠近新建基坑一侧)地下连续墙位移增量较小。其原因是新建基坑开挖淤泥区使右侧地下连续墙所受的主动土压力减少。  相似文献   

12.
结合某隧道2#通风竖井施工项目,采用数值模拟的方法,分析了竖井及风道的施工对围岩衬砌稳定性的影响。研究结果表明:竖井开挖初期,衬砌压应力、壁座拉应力和位移量均随着竖井的开挖逐步增大,最大值分别为8.1 MPa、1.03 MPa和2.62 mm。开挖到第五步和第六步时对衬砌的应力和位移影响最为不利,应采取相应的保护措施。风道开挖后拱底上抬、拱顶下沉,拱底衬砌最大位移量为3.2 mm,临近竖井部位衬砌拉应力值达到3.76 MPa,可能对初期衬砌造成局部破坏。竖井和风道连接部位衬砌和围岩均出现拉应力集中,最大拉应力值分别达到3.8 MPa和1.6 MPa,围岩最大上抬位移为2.66 mm,竖井和风道连接部位出现局部破损,在实际工程的施工中需予以加固。  相似文献   

13.
以厦门市轨道交通一号线集美中心站-诚毅广场站区间隧道为依托工程,利用数值模拟的方法,设置了9个工况研究不同注浆参数对盾构隧道管片受力的影响。结果表明:管片所受到的最大压应力值远小于混凝土的极限抗压强度,但随着注浆浆液重度或注浆层厚度的增加,管片所受到的最大拉应力值可能达到或超过混凝土的极限抗拉强度,从而导致管片发生破坏。  相似文献   

14.
设计仅用来支挡土压力的悬臂式挡墙在墙顶搭板后,其墙身结构受力特征会发生显著改变。现在分析悬臂式挡土墙土压力计算方法的基础上,建立了悬臂式挡土墙三维数值计算模型,研究其顶板温度作用对悬臂式挡土墙结构受力的影响。计算结果表明:在土压力和顶板升温共同作用下,挡土墙外侧中部的最大拉应力超过混凝土最大抗力,立墙外侧中部将产生裂缝;在土压力和顶板降温共同作用下,挡墙内侧底部最大拉应力超过混凝土最大抗力,立墙内侧底部将产生裂缝。有限元计算结果与实际情况基本相符,说明计算结果可信,符合实际情况。据此,对结构病害提出了加固建议。  相似文献   

15.
为验算扩建连拱隧道初期支护和中墙参数的合理性,采用荷载-结构法对初期支护内力、新中墙应力、基底应力等进行受力分析,计算结果表明:1)左、右洞均扩建完成后,除左右洞拱脚、初支与中墙连接处由于应力集中安全系数大于1小于1.53,其他危险截面的安全系数均大于1.53,满足规范要求;2)仅左洞扩建完成时将形成偏压非对称连拱隧道,除中墙底外,左洞初支其他危险截面的安全系数均大于最终状态的安全系数;3)中墙角隅处最大压应力和拉应力分别为8.17 MPa和0.61 MPa,不满足强度安全系数要求,应加强配筋和构造设计;4)中墙最薄截面处最大压应力和拉应力分别为3 MPa和0.5 MPa,满足强度安全系数要求;5)中墙底部和仰拱拱脚侧基底应力较大,应对其进一步注浆加固,使其满足地基承载力要求。  相似文献   

16.
双面加筋挡土墙结构特性分析   总被引:2,自引:2,他引:0       下载免费PDF全文
苏骏  毕辉 《路基工程》2010,(2):101-103
结合远安至当阳一级公路改建工程中采用的双面加筋挡土墙结构,以非线性有限元法对其结构特性进行了分析,并用Drucker—Prager模型模拟土体材料的非线性,研究分析了拉筋拉应力及墙背土压力沿墙高的分布规律,有限元分析结果与现场实测值吻合良好。研究表明,双面加筋挡土墙结构明显不同于一般重力式挡土墙,研究成果对其工程应用和进一步推广提供参考。  相似文献   

17.
利用钢梁与混凝土的组合性能优势和技术,将市政快速路大跨径简支预制板组合梁方案优化设计为叠合板组合梁桥面体系,新方案实现桥梁结构高度降低17.3%,用钢量降低20.2%。优化方案有限元模型验算结果显示,在最不利工况荷载下,边梁抗弯最不利应力为162 MPa,混凝土最不利压应力为-14.2 MPa;中梁抗弯最不利应力为165 MPa,混凝土最不利压应力为-13.8 MPa;边梁挠度39.3 mm,挠跨比为1/1399,中梁挠度36.6 mm,挠跨比为1/1503,均满足设计规范要求。成桥静力载荷试验结果显示,在公路-I级荷载水平下,结构最大挠度值为17 mm,最大挠跨比为1/3235,最大压拉应力值为24.68 MPa,最大压应力值为50.16 MPa,远小于Q345钢材应力设计值,桥梁结构性能满足规范要求。  相似文献   

18.
针对节段现浇预应力混凝土箱梁后浇湿接缝在早龄期因收缩导致的开裂问题,以嘉鱼长江公路大桥为背景,通过试验测试了该桥施工阶段箱梁混凝土早龄期力学性能,得到了箱梁节段混凝土的收缩预测模型。基于此,采用有限元软件Midas/FEA建立了湿接缝及相邻节段箱梁的有限元模型,分析了湿接缝在混凝土收缩作用下的应力场,并对不同的预应力张拉方案进行了分析。结果表明:湿接缝在混凝土收缩和相邻节段约束作用下,其在混凝土浇筑后第3 d在结合面位置由收缩导致的拉应力达到了1.8 MPa,为该龄期混凝土抗拉强度的87%,因此需在此时进行预应力的张拉以降低混凝土拉应力,防止混凝土在早龄期开裂;若湿接缝按常规方案张拉预应力,湿接缝早龄期最大主拉应力均小于混凝土即时抗拉强度,但其28 d最大主拉应力为2.75 MPa,为该龄期混凝土抗拉强度的93%,存在开裂风险;在该文提出的张拉方案下,湿接缝在早龄期最大主拉应力比常规方案降低了22.2%~32%,有效保证了后浇湿接缝在早龄期的抗裂性要求。  相似文献   

19.
南京长江第四大桥南锚碇基础地下连续墙施工   总被引:1,自引:0,他引:1  
南京长江第四大桥主桥为双塔三跨悬索桥,其南锚碇基础支护结构为"∞"形地下连续墙,分Ⅰ期、Ⅱ期2种槽段,槽段采用铣接法连接。施工前先进行地质水文详勘与封排水设计、地基加固、修筑导墙及试验槽段施工。按隔墙、北外墙、Y形槽段、南外墙顺序施工地下连续墙,先施工Ⅰ期槽段,再施工Ⅱ期槽段。Ⅰ期槽段采用三铣成槽,Ⅱ期槽段采用一铣成槽,Y形槽段采用五铣成槽。在外墙预埋钢管进行墙底帷幕灌浆。基坑开挖前进行抽水试验,结果表明基坑日渗水量≤150 m3;基坑开挖过程中,围护结构变形和周边土体的沉降均小于预警值,说明地下连续墙施工质量良好。  相似文献   

20.
本文以某公路下穿隧道工程为依托,利用FLAC~(3D)模拟软件对隧道开挖过程进行流固耦合数值模拟计算,根据数值模拟结果对围护结构的变形以及土体中孔隙水压力的变化进行了分析。结果表明:本工程地下连续墙变形与一般围护结构变形规律相一致;模拟过程中地下连续墙主动区一侧土体中孔隙水压力呈现逐渐减小的变化趋势;降水影响范围内的部分土体中出现负超静孔隙水压力,有利于改善开挖阶段的土体强度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号