首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
处于低轴力水平、复杂受力过程的盾构衬砌,如输水盾构隧道、联络通道以及盾构法车站等工程施工全过程对应结构形式,其模型计算对隧道环纵缝接头刚度和强度随衬砌内力的非线性变化提出更高的要求。为解决上述具有特殊使用功能的盾构隧道衬砌内力计算中接头刚度非线性变化明显的问题,提出一种盾构衬砌管片计算模型——壳-接触模型,该模型考虑环纵向螺栓在管片厚度方向的空间分布,在管片接头处采用"压剪耦合"的设计理念。以接头抗弯数值模型与室内抗弯试验结果对比反映模型对接头弯曲特性模拟的合理性;通过与壳-弹簧模型分析结果对比,由管片错台差异体现模型接头整体抗剪刚度、抗剪强度的非线性特征,由环向螺栓力学差异确定模型在接头处于压弯力学组合状态下螺栓对衬砌刚度的实际贡献,由此验证壳-接触模型对衬砌力学行为模拟的合理性。  相似文献   

2.
以鄂尔多斯市的补连塔煤矿#2盾构斜井为工程背景,基于Burgers模型,研究在围岩蠕变和同步注浆浆液硬化作用下考虑接头非线性特性的盾构斜井衬砌结构内力分布,并将内力分析结果分别与考虑围岩蠕变效应及同步注浆浆液硬化效应两种情况进行对比。结果表明:考虑围岩蠕变效应的结构内力极值呈自然对数增长,同步注浆浆液硬化效应可减小斜井衬砌的受力;由于考虑了接头的存在,采用双段折线非线性抗弯刚度的斜井结构内力分布呈现不对称现象。  相似文献   

3.
张银屏 《隧道建设》2014,34(2):101-106
盾构隧道衬砌内力计算常用方法为修正惯用法,其计算参数一般根据经验选取。基于壳-弹簧模型,考虑接头抗弯刚度与接头轴力弯矩的非线性关系,对地面出入式超浅埋盾构隧道修正惯用法的关键计算参数抗弯刚度效率系数η和弯矩调整系数ξ的取值进行分析研究。得到结论:超浅埋盾构隧道η应在规范范围内取最小值,ξ应取最大值,负覆土情况下可偏保守取1。  相似文献   

4.
盾构隧道管片衬砌受力分析力学模式探讨   总被引:2,自引:0,他引:2  
李围  孙继东  李成 《隧道建设》2005,25(Z1):17-20
以铰接圆环、匀质圆环和梁-弹簧模型三种力学模式对盾构隧道管片衬砌的内力进行了计算分析,得出用梁-弹簧模型计算的弯矩值介于铰接圆环和匀质圆环的内力值之间.梁-弹簧模型直接考虑接头的抗弯刚度,能够真实地模拟管片衬砌的力学行为,因此在盾构隧道管片衬砌设计中,具有推广意义.  相似文献   

5.
为了保证盾构隧道衬砌结构的安全性,通过工程试验数据,利用均质圆环法和梁-弹簧模型,对比分析了考虑管片环向接头刚度与否对衬砌结构力学特性的影响;并对环向接头刚度值的大小对衬砌结构力学特性的影响做了分析,得出了矩形盾构隧道衬砌结构的内力和位移随环向接头刚度值的变化规律,同时利用工程试验数据与仿真结果作了相互映证。  相似文献   

6.
何浪 《公路》2021,(3):365-369
复合地层由于地层刚度的差异,导致隧道管片结构在施工与运营期容易产生开裂。针对该问题,建立考虑接头抗弯刚度非线性的裂损管片计算模型,对软弱夹层地层中裂损管片在不同裂纹位置、不同裂损程度及不同地层条件下的力学行为进行分析。研究结果表明:(1)裂纹的存在对裂纹附近截面的内力会有较为明显的卸荷作用;(2)衬砌截面的内力随着隧道横截面内软弱夹层厚度的增加而增大,同时,隧道未开裂侧结构椭变效应受软弱夹层厚度的影响大于开裂侧;(3)随着软弱夹层刚度的减小,裂纹对裂损截面附近弯矩的卸荷作用增加;(4)管片多个分块同时出现裂纹时,由于接头的阻隔效应,多裂纹对结构内力的影响未产生叠加效应。  相似文献   

7.
以神华新街煤矿深部盾构斜井为工程背景,运用有限元软件ANSYS,建立管片衬砌-斜井围岩的二维模型,研究了衬砌围岩间两种接触作用和管片衬砌两种接头刚度模拟方式对斜井衬砌受力特性的影响。结果表明:在煤矿盾构斜井计算模型中,由于摩擦系数取值随意性大且计算收敛性差,衬砌围岩之间采用节点位移耦合接触作用更为合理;由于非线性抗弯刚度一般根据管片接头试验取值,计算结果相对合理,管片衬砌应采用非线性接头刚度。  相似文献   

8.
叶宇航  王建  徐文田  刘鑫  柳献 《隧道建设》2018,38(Z2):151-160
为得到能真实反应软土地基大直径盾构隧道结构受力特点又能保证衬砌结构安全的设计模型,结合广州轨道交通4号线南延段大直径地铁盾构隧道结构现场实测结果,采用ANSYS软件研究适用于软土地基大直径盾构隧道衬砌结构设计的计算模型。基于反分析得到的设计模型,对水平侧压力系数、地基弹簧刚度、管片厚度、管片接头位置、管片分块数量等影响大直径盾构隧道衬砌结构受力特性的因素进行敏感性分析。结果表明: 1)采用地基弹簧模拟底部反力并通过调整弹簧的范围可得到既能真实反映衬砌结构受力特性又能保证结构安全性的计算模型; 2)衬砌结构受力对侧压力系数和管片厚度敏感,对地基刚度不敏感; 3)接头位置变化和管片分块数量主要影响布置地基弹簧范围内的管片受力。  相似文献   

9.
梁霄  官林星  温竹茵  孙巍  柳献 《隧道建设》2016,36(12):1456-1464
本文以国内首条矩形盾构隧道工程为背景,对矩形盾构衬砌结构在整个施工期的荷载及结构响应进行现场追踪测试,探索衬砌结构在施工期的主要受力阶段、结构外荷载及其响应随时间的变化规律,以全面掌握矩形盾构隧道衬砌结构在施工期的受力行为。研究结果表明: 1)衬砌结构在施工期的受力可划分为自重阶段、脱出盾尾阶段、同步注浆阶段和稳定荷载阶段; 2)脱出盾尾阶段和同步注浆阶段的结构外荷载分别为稳定荷载阶段的1.5~3.0倍和1.5~2.5倍,为衬砌结构在施工期的2个不利受力阶段; 3)稳定荷载阶段的结构外荷载及其分布与理论计算较为吻合; 4)衬砌结构在施工期的内力基本满足左右对称,内力分布特征与运营阶段基本一致。  相似文献   

10.
王玉龙  徐彬 《隧道建设》2014,34(Z1):111-116
为了解盾构管片衬砌结构的受力特性,解决盾构衬砌结构受力的数值分析难点,首先采用ANSYS分析系统对衬砌管片接头力学建立计算模型,通过模拟载荷试验确定管片接头刚度系数,进而利用销钉单元对衬砌管片按梁-弹簧计算模型进行分析,根据管片接头力学处理方式不同,与惯用计算方法和修正惯用计算方法的结果进行对比,最后对盾构在辅助油缸推力作用下管片的纵向受力进行三维模拟,对均匀施加油缸推力和偏心施加油缸推力进行分析对比,研究成果可对盾构衬砌管片设计提供依据。  相似文献   

11.
从盾构隧道管片衬砌结构和接缝接头的变形特点、衬砌结构与土层相互作用的模式出发,考虑盾构区间隧道和连接通道的施工工艺特点、结构的对称形状等,研制了适用于此种特殊受力结构体系的三维广义协调平板壳-弹性铰-地基系统计算模型,该模型可以考虑盾构隧道管片衬砌结构的错缝拼装或通缝拼装情况、衬砌结构和接缝之间的不连续性、接缝接头能承受一定弯矩的特点以及衬砌结构和土层的相互作用等。并对某越江盾构隧道工程进行了计算分析,为工程初步设计方案优化提供了较好的参考。  相似文献   

12.
张伟 《华东公路》2012,(5):24-26
盾构隧道抗震减震措施主要有两个总体思路,即:改变衬砌一定范围内围岩的性能和改变结构本身的性能。改变衬砌结构本身性能方便有多种方式,比如:增加衬砌厚度,改变管片环向或纵向接头方式、改变衬砌刚度等。通过数值分析比较不同的衬砌刚度对盾构隧道抗震性能的分析。得出单纯提高管片的刚度并不能提高盾构隧道的抗震性能,反而增加衬砌管片的受力。  相似文献   

13.
刘威  王祺  庄欠伟  张子新  黄昕  顾贇 《中国公路学报》2020,33(2):103-113,157
建设深埋排水调蓄隧道是缓解城市内涝问题的最有效方法之一。深埋排水调蓄隧道管片由于其直径大、外部水土荷载大、受内水压等特点,在工程实际应用前须对其受力变形特征进行研究。提出了一种1∶1平躺式原型盾构管片力学加载方法,并建立了一套管片模型试验数据采集系统。基于该试验系统,以上海苏州河段深埋排水调蓄水隧道为例,通过单环整环试验研究了埋深增加、蓄水和排水状态下管片结构内力和变形的变化规律,建立了接头抗弯刚度与偏心距之间的关系。试验结果表明:空管状态竖向收敛和水平收敛值分别为18,20mm,满管状态竖向和水平收敛值分别为78,80mm,蓄水对管片受力变形较埋深增加影响更为明显;卸载后管片变形无法恢复到初始状态,管片整体呈现非完全弹性的特点;接头抗弯刚度受管片内力影响较大并呈现空间变异性,空管状态接头抗弯刚度约为满管接头抗弯刚度的3~6倍;抗弯刚度与偏心距近似呈反比例函数关系,正负弯矩条件下均可以划分为3个阶段。  相似文献   

14.
为了解大直径地铁盾构隧道衬砌结构的受力性能,基于广州轨道交通4号线南延段大直径地铁盾构隧道工程,采用水土压力计和钢筋应力计传感器对衬砌结构运营期间的外荷载和钢筋应力进行现场测试,得到衬砌结构外荷载和内力的响应规律。通过衬砌结构计算模型理论值与现场测试结果的比较,说明衬砌结构计算模型的合理性。研究结果表明:1)衬砌结构顶部的水土总压力实测值和上覆土柱的重力基本一致;2)衬砌结构底部的水土总压力呈现中间小、两边大的分布形态,计算模型中可在衬砌结构下部半圆周范围内布置土弹簧模拟衬砌结构的实际受力情况。  相似文献   

15.
何川  耿萍 《中国公路学报》2020,33(12):15-25
首先分析了各国盾构隧道抗震计算的现状,总结了常用的盾构隧道抗震计算方法,分析了这些方法的优缺点及适用性。在此基础上介绍了在盾构隧道抗震分析方法方面笔者带领的研究团队近年来取得的部分进展,主要有:在盾构隧道横向抗震计算中提出修正静力法,解决了静力法的计算合理性问题;提出考虑环间接头非线性刚度的纵向迭代计算方法,进一步发展了纵向广义反应位移法的适用性,以期解决大型复杂结构在非均匀地层中的高精度计算问题;并介绍了上述研究进展在中国相关抗震规范中的采纳应用情况。最后对隧道实用抗震计算方法进行了展望:在管片结构劣化对盾构隧道抗震的影响、拟静力计算方法如何考虑地层非线性、近场地震动对隧道的影响等方面有待进一步研究。  相似文献   

16.
为了应对盾构隧道因复杂赋存环境、多元结构形式及使用功能所面临的计算模型精细化、荷载取值合理化、计算模型精准化等高要求,通过调研盾构隧道结构分析方法的发展现状,综述了当前盾构隧道结构计算分析中荷载计算方法,并结合近10年来笔者所开展的相关研究工作对盾构隧道静、动力分析方法与计算模型进行了汇总和梳理。在盾构隧道荷载取值方面,阐述了深层空间水土荷载作用机理、施工阶段流固耦合效应以及岩质地层地震荷载合理取值等方面的问题及进展;在结构分析理论及模型方面,重点论述了盾构隧道整体化分析方法的内涵及思路、盾构隧道复杂接缝面力学行为、基于接头非线性抗弯刚度计算的结构分析方法以及结构整体受力特征及破坏模式的试验与实测手段验证三方面取得的成果;综述了以地层-结构组合体系反应位移法和纵向广义反应位移法为代表的盾构隧道横、纵向抗震分析方面的研究成果,并对盾构隧道结构分析中考虑耐久性因素的研究现状做了介绍。最后,针对大深度、高水压、特殊环境等盾构隧道工程的建设形势,展望了盾构隧道结构分析方法的发展趋势。  相似文献   

17.
纵向抗弯刚度是盾构隧道的基本力学参数,其取值的合理性直接关系到盾构隧道纵向响应分析结果。针对盾构隧道纵向抗弯刚度取值未考虑环缝接头拉伸刚度与纵向残余顶推力的问题,提出了一种考虑纵向残余顶推力的盾构隧道纵向抗弯刚度解析算法。首先,通过理论分析将盾构隧道的纵向挠曲变形考虑为均质圆管的纵向挠曲变形与管片环环缝张开导致的纵向挠曲变形两部分,并由此得到了盾构隧道纵向抗弯刚度解析算法,其结果与管片材料的弹性模量、隧道外径、管片幅宽、环缝接头数量、环缝接头拉伸刚度和纵向残余顶推力等因素有关。然后,设计了可考虑环缝接头拉伸刚度与纵向残余顶推力的缩尺模型盾构隧道,并开展了纵向抗弯刚度模型试验,分别对模型隧道的纵向挠曲变形量与环缝张开变形量进行了测试。最后,通过试验数据对纵向抗弯刚度解析算法进行了验证。结果表明:模型盾构隧道实测纵向抗弯刚度与理论算法求解得到的纵向抗弯刚度基本一致;当不施加纵向残余顶推力时,随着加载的增加,盾构隧道纵向抗弯刚度总体变化不大,而当施加纵向残余顶推力时,对于相同纵向残余顶推力,盾构隧道纵向抗弯刚度随着加载的增加而减小,并逐渐趋于稳定;在盾构隧道纵向响应分析中,需要减小纵向残余顶...  相似文献   

18.
根据盾构隧道管片衬砌之间的连接特性、衬砌结构与土层之间的相互作用性质,提出了基于弹性地基理论的盾构隧道管片衬砌结构的梁-弹性铰-地基系统模型,并研制了相应的有限元分析程序FHEF,该模型能直接计算出盾构隧道管片衬砌结枸的轴力、剪力、弯矩和变形,将计算结果直接用于工程设计。依据二维计算模型,就盾构隧道管片衬砌结构纵向接缝不同位置对衬砌结构的内力影响进行了详细计算分析,计算结果表明,纵向接缝的不同位置对结构的内力和变形不容忽视,工程设计时应从结构设计和防水设计等多个角度来确定纵向接缝的设置,从而指导工程实践。  相似文献   

19.
梁霄  柳献  陈健  孔玉清 《隧道建设》2015,35(7):679-685
以扬州瘦西湖盾构隧道为背景,对管片衬砌结构在施工期和后期的结构荷载和内力进行现场追踪试验,探讨施工阶段同步注浆对隧道衬砌结构受力的影响,总结隧道衬砌结构荷载和内力在施工阶段随时间的变化规律。研究结果表明:现场测试方法可以较为全面准确地得到隧道衬砌结构荷载和内力在施工期的分布;衬砌结构荷载总体随时间呈先减低后趋于平稳的规律,施工期的注浆作用会使衬砌结构荷载大于稳定后的结构荷载;衬砌结构内力在注浆阶段不稳定,注浆作用对结构的轴力影响较大。  相似文献   

20.
李春良  王勇  王旭 《隧道建设》2013,33(8):645-649
为研究盾构管片环向刚度分布问题,针对盾构隧道产生的各类病害和实际的接头位置,建立各类病害发生后的管片结构环向刚度模型。计算结果表明: 1)管片环向刚度模型的理论计算结果与管片的实际刚度分布情况相符,具有较高的精度。 2)刚度计算模型能真实准确地揭示出管片结构环向变刚度的分布情况,所建立的刚度分布模型是正确与合理的。刚度模型的建立有利于后期研究盾构隧道病害发生后的盾构管片各截面内力重新分布问题,为后续研究奠定基础。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号