首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 546 毫秒
1.
以网联自动驾驶汽车(Connected Autonomous Vehicle, CAV)为研究对象, 研究了CAV车队通过城市信号交叉口的速度轨迹优化控制策略。基于最优控制理论, 采用CAV的自动驾驶模型描述车间相互作用, 以所有CAV车辆在行驶过程中的总油耗为优化目标, 根据信号灯的配时信息建立模型约束, 通过优化CAV头车的速度轨迹, 保证整个CAV车队在绿灯相位下快速通过交叉口并实现油耗最小。为了对该优化控制进行高效求解, 采用离散Pontryagin极小值原理建立最优解的必要条件, 利用基于神经网络训练的弹性反向传播(Resilient backpropagation, RPROP)算法设计了数值求解算法。多个典型场景的仿真结果显示: 整个CAV车队均能在不停车的情形下通过信号交叉口, 避免因在红灯时间窗到达停车线造成的停车、启动等过程, 总油耗量最高可减少69.74%。该控制方法利用网联自动驾驶技术的优势, 显著改善了城市交通通行效率和燃油经济性。   相似文献   

2.
在未来自动驾驶环境下,自动驾驶车辆之间能相互配合、相互穿插地通过交叉口,而无需信号灯控制。因此,有必要研究新一代的能保障自动驾驶车辆安全高效通行的交叉口控制模型。已有控制模型可分为基于交叉口空间离散的控制模型和基于交叉口冲突点分析的控制模型,目前主要存在控制方式和模型非线性等方面的不足。建立了基于混合整数线性规划(MILP)的自动驾驶交叉口控制(Autonomous Intersection Control,AIC)模型,设计交叉口自由转向车道,允许交叉口所有进口道都能"左直右"通行,将交叉口空间离散为等距网格并建立网格坐标方程,考虑车辆在交叉口内部的行驶轨迹,建立车辆轨迹的上边界和下边界方程,确定行驶轨迹压过的交叉口网格,并建立网格被车辆路径占用的时间方程,使用同一网格同一时间只能被一台车辆占用的冲突点约束保障交叉口安全通行。模型以所有车辆通过交叉口的总延误最低为目标函数,通过将约束条件线性化处理,使用AMPL (A Mathematical Programming Language)并调用Gurobi数学规划优化器对模型进行求解。最后对模型效益进行了案例分析。结果表明:所提模型能有效处理自由转向车道的交通流到达模式,对比已有模型经常采用的先到先服务控制策略,该模型能整体优化车辆通行方案,降低车均延误50.51%,降低最大车辆延误29.12%,同时交叉口空间利用率提高了66.17%。  相似文献   

3.
为了研究如何结合移动检测数据来确定交叉口排队长度,并以此来衡量交通拥堵程度的问题,利用车辆行驶轨迹,分析了通过交叉口车辆的排队特点。根据车辆在队列中的不同排队位置,分车辆通过交叉口时所存在的A,B,C这3种位置,建立了面向延误最小的排队长度估计模型。其中,通过虚拟线圈检测器后开始减速停止在停车线前的A位置车辆排队估计模型基于基本延误模型;减速进入虚拟线圈检测区域停车的B位置车辆排队估计模型基于简化车辆跟驰模型,对可获得车辆行驶轨迹的网联车减速过程进行了重建;减速停止在虚拟线圈检测器前的C位置车辆排队估计模型基于LWR消散模型以及交通流理论算法,并利用网联车车辆行驶轨迹数据进行了加速过程的重建。在此基础上,根据不同位置车辆与队尾网联车的距离不同,对其到达率赋予不同的权重,计算总的排队长度。最后,通过图新地球地图软件投影并筛选车辆在案例交叉口的车辆行驶轨迹,利用微观交通仿真软件VISSIM对本研究的模型进行仿真验证。结果表明,排队长度估计模型与真值的最大误差为12.4%,最小为2.2%,平均误差为8.75%,方差为12.595%~2,绝对与相对误差均保持在可接受范围以内,说明基于车辆行驶轨迹的信号交叉口排队长度估计模型能够较为有效地估计城市道路交叉口的排队长度。  相似文献   

4.
网联环境具有数据采集和交互方面的优势,能更精确地评估交通需求,更科学地实施交通管控措施。根据公交车与非优先车辆权重及延误分布差异,研究了考虑非优先车辆延误的公交优先单点信号控制方法。利用交叉口车辆轨迹数据计算轨迹样本到达率参数,根据车辆到达交叉口的分布特征构建各相位的车辆到达率概率函数,并采用极大似然估计预测到达率,基于交通流冲击波模型分别计算出各相位的排队波、驶离波和消散波波速。公交车数量少权重较高且网联化程度高,利用基于冲击波的时距图推导延误表达式;而非优先车辆数量多单车权重低且网联化程度低,利用基于到达率的定数理论推导延误表达式。按乘员数对公交车延误值和非优先车辆延误值进行加权,以加权延误最小为目标函数建立了混合整数线性规划模型,解得相位时长整数解,并反馈到信号机系统实现公交优先自适应信号控制。以武汉市车城北路与东风大道交叉口为对象,采集不同时段交叉口流量数据,利用SUMO软件开展仿真实验,结果表明:相比优化前,低、中、高流量情况下公交车单车平均延误时间分别减少25.63%、25.25%、18.32%;同等条件下平均每周期非优先车辆延误时间分别减少8.80%、4.68%、1.99%;同等条件下平均每周期加权延误时间分别减少20.98%、9.39%、12.70%。证明所提方法能较好地适配交通需求,且流量较低时效果最好。   相似文献   

5.
随着汽车逐步向智能化、网联化发展,智能网联车辆逐步进入实际应用阶段。进行智能网联车辆的通行行为优化,对提升驾驶安全性和行车效率,避免事故发生和交通拥堵至关重要。车辆在通过交叉口时将受到很多环境及运动因素的影响,而现有的通行优化模型难以准确表达各类因素共同作用下的行驶环境。为此,基于风险场理论建立由环境场和运动场组成的信号交叉口行车风险场,表征信号交叉口中每点的实时行车风险程度,从而引导车辆驶向风险值低点,并提供下一步长的位移及速度指引,实现车辆的动态轨迹优化及速度控制。典型场景下的仿真结果表明:在优化模型的控制下单车的信号交叉口通行效率明显提升,其中直行方向车辆单车平均通行效率提升最高,平均提升6.35%,通过对交叉口面积内所有车辆进行通行行为优化,交叉口通行效率提升了9.3%,这表明所建模型可以准确表达交叉口行车环境并优化车辆通行行为。研究结论可应用于自动驾驶车辆的交叉口通行控制,并为网联环境下的行车环境表达和安全驾驶控制提供模型基础。  相似文献   

6.
为降低干线道路系统的交通排放量,基于机动车比功率改进红绿灯期间排放因子的标定方法,进而以相位有效绿灯时间为决策变量,构建使机动车排放总量最小化的干线交叉口群时空资源优化模型.分析相邻交叉口间车队延误与相位差的关系,改进以车队延误最小为目标的相位差优化模型.为验证模型,设计一个案例,根据传统方法获得参考配时方案,借助Vissim软件标定红绿灯期间的排放因子,并使用所提方法获得优化配时方案.结果显示,每种污染物绿灯期间的排放因子均明显高于红灯期间;与参考配时方案相比,优化配时方案下各交叉口车辆延误和排放量均减少8~11%.所提模型能同时降低干线交叉口群的车辆延误和交通排放量,可用于优化干线协调信号控制方案,进而缓解交通拥堵.   相似文献   

7.
信号交叉口是影响交通系统运行安全和效率的关键。在国家新基建战略的提出以及车路协同技术不断发展的环境下,合理设置网联自动驾驶车辆(Connected and Autonomous Vehicle,CAV)专用进口道,对信号交叉口进口道处不同网联类型的车辆进行科学的交通组织,能够提高交叉口的通行能力,降低行车延误,促进城市交通系统效率与安全的双提升。建立协同自适应巡航控制(Cooperative Adaptive Cruise Control,CACC)车辆跟驰模型和GM (General Motor)模型分别描述混行环境下网联车辆与非网联车的跟驰行为,以提高进口道通行能力、降低延误和油耗为优化目标,采取敏感度分析方法,提出不同CAV比例、进口道车道数、交通量和信号配时方案组合情况下CAV专用进口道的动态设置条件,适用于不同交通状况的信号交叉口,具有较强的普适性。数值仿真结果表明:采用该方法设置CAV专用进口道能够提高混行信号交叉口的通行能力、降低延误和车均油耗;在实际应用时,可视交叉口类型和交通智能化程度灵活选取CAV专用进口道设置方式,为混行交通流环境下交叉口进口道的交通组织优化提供理论依据和模型支持,对车路协同系统的相关研究具有参考意义。  相似文献   

8.
为了解决连续流交叉口车辆多次停车问题,提出了各流向车辆在所遇第2条停车线处不用停车的优化控制策略。通过协调主预信号配时,调整信号控制相位相序方案,促使车辆直接通过所遇第2条停车线,使得左转车辆停车次数由3次减少到2次或者1次,直行车辆停车次数由2次减少到1次。分析各流向车辆到达-驶离图式,构建左转车流在所遇第3条停车线处的延误计算模型,结合Webster经典模型,给出连续流交叉口整体延误计算模型,其计算结果与VISSIM仿真结果基本一致。推导给出车辆不二次停车、车车不冲突以及连续流交叉口自身交通组织等因素所需满足的约束条件,以交叉口车均延误最小化为优化目标,构建连续流交叉口主预信号协调配时优化控制模型,并设计了4种交通场景以验证不同情况下的效益改善情况。研究结果表明:通过信号协调减少1次停车,能够降低50%以上的车均延误和车均停车次数;根据各转向交通量所占比例选择合适的车道分配方案有助于提升连续流交叉口通行效率;在2种策略下交叉口车均停车次数分别为0.88~1.05、0.59~0.77,与已有控制策略约2次车均停车次数相比,明显降低了连续流交叉口车辆停车次数。研究成果可为连续流交叉口控制提供新的视角,对交叉口通行效率的提升效果也更加显著。  相似文献   

9.
为弥补逆向可变车道切换控制方法判断条件较为单一,且配套的信号控制方法难以适应交通流动态变化的不足,提出逆向可变车道动态启停切换及交通信号优化控制方法.根据交叉口流向饱和度、车道切换效益与车道切换时间间隔等指标获取逆向可变车道动态切换控制决策,实现逆向可变车道的动态开启和关闭;同时,利用检测器获取车辆到达率、车道饱和流率与剩余排队车辆数等实时交通流数据,根据车流到达驶离图示推导交叉口车均延误计算公式.引入左转车道释放流率系数,修正左转车道释放流率,改进了交叉口延误计算公式,构建以延误最小为目标的交叉口信号配时动态优化模型.最后,以武汉市古田四路-长丰大道交叉口为对象开展了仿真实验,结果表明:相比于定时切换控制方式,动态切换控制与信号配时动态优化方式下的逆向可变车道交叉口车均延误减少6.7%~14.9%,含有逆向可变车道进口方向的左转车均延误减少7.6%~15.6%,平均排队长度减少6.4%~21.9%,验证了动态控制方法提升交叉口运行效率的有效性.   相似文献   

10.
随着智能交通技术的发展,交通信息获取的时间颗粒度将越来越小,这为城市动态交通信号配时优化模型和方法提出了新的挑战。为解决经典信号相位控制优化(COP)算法中未考虑交叉口预测区间内交通流量动态变化对信号配时方案控制效果的影响。文中提出了基于动态规划的单交叉口信号配时滚动优化算法。首先,在分析交叉口信号配时关键问题的基础上,构建了以交叉口车辆平均延误和平均排队最小为优化目标,交叉口各相位绿灯时间长度为约束条件的信号配时非线性整数优化模型;并设计了动态规划算法求解该模型。其次,为反映交叉口车流在预测区间内动态变化的特性,在动态规划算法的基础上提出了滚动优化策略,根据实时更新的预测数据滚动优化信号配时方案,并将信号配时方案实时传输到交叉口信号控制器中。最后,通过实际调查数据构建微观仿真环境,采用VISSIM COM二次编程开发技术结合MATLAB编程软件实现了文中模型和算法,并对比分析文中算法和经典的COP算法。通过改变交叉口的输入流量,测试不同流量条件下控制算法的控制效果。结果表明,与经典的COP算法相比,文中算法不仅能够使车辆在交叉口的平均延误减少20%,而且能够保证交叉口各个相位的车辆平均延误的均衡。  相似文献   

11.
针对车路协同环境下的冲突问题,建立了以系统反应时间代替驾驶员反应时间的自动驾驶车辆制动距离模型,以此作为安全距离改进了矩形冲突检测模型,并根据轨迹优化的研究思路,提出了以矩形冲突检测模型为基础的冲突消解算法,对非通行优先权车辆进行速度引导,避免车辆冲突。在车联网开源框架 Veins 的基础上,将交通仿真器 SUMO和网络仿真器 OMNeT++双向耦合,并对冲突检测模型与消解模型进行验证。仿真结果显示,该冲突检测及消解模型具有可行性,与传统无信号交叉口四路停车让行规则相比,模型中的速度引导方案能减少合流冲突车辆 8.6%的平均行驶时间,减少交叉冲突车辆 8.3%的平均行驶时间;合流冲突和交叉冲突中车辆的平均速度分别提高了61.4%和105.0%。在实际应用中,冲突消解模型可以为不同速度范围内的自动驾驶车辆提供速度参考,降低无信号交叉口车辆发生碰撞的概率,提高无信号交叉口的通行效率。  相似文献   

12.
针对现有的车速引导模型存在未综合考虑车辆跟驰行为、引导场景划分较粗略等问题,研究了4种基于车路协同环境下实时优化各车的车速引导模型。对车辆进行所属车辆列队划分,考虑车速引导影响对FVD跟驰模型进行改进。以车辆列队为引导单元,将车辆可能面临的交通状况细分为8种引导场景,以引导车辆不停车或少停车通过交叉口为目标,直接优化车辆加/减速度,建立车辆列队后车根据改进的跟驰模型计算目标跟驰加/减速度,并与头车组成列队以同一目标车速通过交叉口停车线的4种车速引导模型。以南昌市海棠北路/枫林西大街交叉口为例进行仿真验证,结果表明,所提出的车速引导模型能使车辆行程时间减少18.9%,最大排队长度减少58.8%,延误减少60.8%,燃油消耗减少36.4%,且适用于不同交通饱和状态,对提高信号交叉口通行效率和减少车辆燃油消耗有显著效果。   相似文献   

13.
为了使自动驾驶汽车在人机混驾环境下能安全、高效地左转通过无信号交叉口,在借鉴人类驾驶人左转时会对周围车辆驾驶意图进行提前预判的基础上,提出了一种基于周围车辆驾驶意图预测的自动驾驶汽车左转运动规划模型。首先将无信号交叉口处周围车辆的驾驶意图分为左转、右转、直行3种类型,利用相关向量机预测周围车辆驾驶意图,以概率形式输出意图预测结果并实时更新,进一步界定自动驾驶汽车与周围车辆的潜在冲突区域并判断是否存在时空冲突;接着,在充分考虑他车速度、航向及车辆到达冲突区域边界距离的基础上建立基于部分可观测马尔可夫决策过程的自动驾驶汽车左转运动规划模型,生成一系列期望加速度;最后,基于Prescan-Simulink联合仿真平台搭建无信号交叉口仿真场景,对所提左转运动规划方法进行仿真验证,将基于博弈论的运动规划方法、基于人工势场理论的运动规划方法与所提出的方法进行比较,并选取行进比例达到1所用的时间和碰撞次数作为评价指标。研究结果表明:基于相关向量机的驾驶意图预测方法可在自动驾驶汽车到达交叉口之前准确预测出他车驾驶意图;基于部分可观测马尔可夫决策过程的左转运动规划方法能够通过速度调整策略实现人机混驾环境下自动驾驶汽车与周围车辆在无信号交叉口处的交互;不同算法对比效果表明,所提左转运动规划方法在自动驾驶汽车与不同数量周围车辆交互的仿真场景下均可有效避免碰撞事故发生并提高自动驾驶汽车左转通过无信号交叉口的效率。  相似文献   

14.
针对目前城市道路交叉口中人车混行现象,综合考虑效率与安全两方面因素,选取延误成本和冲突成本分别作为效率与安全的评价指标,构建有(无)行人专用相位信号控制模式的交叉口运行成本模型.模型的延误成本中,行人和非机动车延误考虑了信号延误、冲突延误以及绕行延误;冲突成本则基于交通冲突理论,以车头时距判断机动车与行人和非机动车是否发生冲突为指标,并根据机动车及行人和非机动车达到分布确定冲突概率.最后,通过北京市四道口交叉口验证了该模型的适用性,并基于遗传算法求得典型信号控制交叉口中行人专用相位设置的阈值在750~900人/h浮动,随着车流量的增长,行人专用相位的设置对行人流量的要求呈现先降后升的趋势.为城市道路交叉口信号配时设计提供了理论支撑,保障行人及非机动车安全、舒适、方便、尊严的出行.   相似文献   

15.
逆向左转交叉口已在中国70余个城市实现常态化应用,各地却始终没有形成设置和运用配套交通控制设施的统一做法。当公交专用车道穿过逆向左转交叉口时,必须考虑如何实施公交优先信号控制。基于此,针对十字形逆向左转交叉口提出一种全感应公交优先信号控制技术,该技术对信号灯设置、信号相位设置、相位显示顺序选择和交通流数据采集提出具体要求。以消除逆向左转车道的交通安全风险、加快优先车辆的运行速度、减少机动车相位的绿灯浪费为目标,设计5组逻辑规则,构成信号控制算法,向优先车辆提供绿灯延长和绿灯早启服务,自动调整机动车相位的绿灯时长、预左转相位的红灯时长和绿灯时长。选取1个典型的十字形常规交叉口和1个十字形逆向左转交叉口作为试验对象,利用Vissim创建虚拟道路交通环境。在交通仿真试验中,通过D-最优设计生成1 000个高负荷交通需求场景,共进行3 000次仿真运行。研究结果表明:就应用全感应信号控制技术的交叉口而言,设置逆向左转车道会在统计学意义上显著影响交叉口性能,对于降低全体车辆平均延误有明显效果,对于降低优先车辆平均延误有一定效果;就逆向左转交叉口而言,将全感应信号控制技术升级成全感应公交优先信号控...  相似文献   

16.
首先建立了在离线信号配时方案下,单个车辆通过信号控制交叉口群的信号延误计算模型;进而以车均延误最小为目标,建立了停靠站最佳布置的选择模型。通过对优化模型解的分析表明,不同的信号协调配时方案对应不同的停靠站最佳布置方案,单点最优解的叠加并非是全局最优解。以两个交叉口和两个停靠站的实际案例进行计算分析,得出在信号优先协调控制方案下的停靠站最佳布置方案,最佳布置方案的下车辆延误明显低于其他方案。最后通过微观仿真软件VISSIM验证了模型的计算结果。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号