首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 421 毫秒
1.
采用有限元分析的结构优化设计方法对钢箱梁桥面铺装体系进行整体优化研究。建立钢桥面铺装体系的有限元模型,选择包括钢板厚度、梯形加劲肋刚度、横隔板间距、铺装厚度等结构参数作为设计变量,建立铺装最大拉应力、铺装与钢板层间最大剪应力、加劲肋挠跨比、钢桥面板最大拉应力等指标的约束条件,采用零阶方法进行优化计算。结果表明,优化设计可以节省材料,降低造价。通过减小梯形加劲肋间距和横隔板间距,增大桥面板厚度和梯形加劲肋高度,可改善铺装的受力状况。  相似文献   

2.
陈想军 《中外公路》2023,(2):144-149
为解决大跨度扁平钢箱梁主梁U形加劲板数值仿真时计算模型过于庞大的问题,提出一种等效加劲板单元有限元计算理论和U形加劲板的简化方法。通过将U形加劲板中U形小箱肋简化为等效加劲条的处理方式,重新分配盖板的横向刚度,计算等效加劲肋对板件受力的影响,采用基于Ansys平台二次开发的Fortran语言进行稳定性分析,与全真壳单元有限元模型进行对比。结果表明:与全真壳单元模型相比,该文提出的等效加劲板单元模型挠度计算结果相对误差仅为5.9%,低阶模态下屈曲系数相对误差仅为2%左右;在该文计算平台的处理下,采用等效加劲板单元模型获得的前5阶模态的时间仅为全真壳单元的1/3左右。  相似文献   

3.
为了解钢箱梁加劲板局部振动的特性以及结构与材料参数对其动力性能的影响规律,指导结构设计,以常见的钢箱梁梯形肋加劲板为例,基于有限元软件ANSYS二次开发,建立有限元模型(母板、横隔板与梯形肋的各个板件均用Shell63单元模拟,铺装层采用8节点实体板单元模拟),计算其基本动力特性,分析梯形肋的数量及厚度、横隔板数量、母板厚度、铺装层厚度等设计参数对加劲板自振频率的影响。结果表明:加劲板的2阶自振频率相比于1阶显著提高,之后阶次的增幅相对平缓,且四边固支的自振频率大于四边简支的自振频率,设计时加劲板的基频与高阶频率应分开考虑,且无需详细考虑每一阶高阶振动;合理确定梯形肋与横隔板的位置比增加数量更能有效提高相应的自振频率;母板、梯形肋与铺装层厚度的变化对自振频率的影响不明显,建议在设计规范的范围内取较低值。  相似文献   

4.
为分析钢箱梁的声振特性,联合锤击试验和统计能量分析(SEA)方法从统计能量分析参数和声振响应两方面进行研究。首先,以某钢箱梁节段[10.1 m(长)×4.8 m(宽)×3.1 m(高)]为对象,通过锤击激励获得顶板和底板不同位置的加速度频响函数。然后,建立SEA模型预测钢箱梁的振动声辐射,考察了各板件在100~5 000 Hz频段的模态数,并将加速度频响函数的仿真结果与实测值进行对比。最后,通过数值仿真分析,探讨了结构设计参数(加劲肋和横隔板)对统计能量分析参数和钢箱梁声振响应的影响规律。研究结果表明:除个别频带外,顶板和底板不同测点位置的加速度频响函数没有显著差异;SEA方法可较精确地预测钢箱梁的高频振动噪声,且相比有限元方法具有更高的计算效率;设置加劲肋后,板件的模态密度和输入功率均下降,子系统间的耦合程度降低,但板件的辐射效率增大;设置加劲肋后,顶板和底板的振动速度级在每个频带平均下降8.2 dB和6.7 dB,钢箱梁声功率级在每个频带平均减小3.1 dB(A);相比加劲肋厚度而言,加劲肋间距对钢箱梁声振响应的影响更大,应优先作为声学优化的主要参数;横隔板可在一定程度上降低板件的振动响应,取消横隔板将导致钢箱梁声功率级在每个频带平均增大1.3 dB(A)。  相似文献   

5.
正交异性钢箱梁U型肋加劲板极限承载力试验   总被引:2,自引:1,他引:1  
以杭州湾跨海大桥通航孔斜拉桥钢箱梁U型肋加劲板为研究对象,按照相似理论设计制作了9块缩尺比例为1:3的扁平钢箱梁闭口U型肋加劲板模型,通过极限承载力试验研究加劲板稳定极限承载力.研究结果表明:9块加劲板模型在轴向荷载作用下发生的失稳破坏形态主要有3种,即母板破坏、母板与加劲肋共同破坏以及加劲肋破坏;各种破坏形态下模型的位移与应变具有相似的变化规律;模型的极限承载力随母板和加劲肋厚度的增加而增大,随着加劲肋高度和间距的增大而减小.  相似文献   

6.
在板件不增设加劲肋的情况下增强板件的稳定性,提出了一种通过自身几何形状改变而增强稳定性的板件—自加劲板,在分析由这种板组成的箱形桥墩结构时将自加劲板等效为构造性正交异性板,从而简化了有限元模型的建立.基于卡氏第2定理并按轴向刚度等效和弯曲刚度等效的原则分别推导了等效于自加劲板的正交异性板的各弹性常数的计算公式,并通过算例进行验证.有限元静力分析结果表明对于处于压弯状态下的自加劲板和等效后的正交异性板的挠曲变形和正应力均相近,稳定性分析结果表明两板件抵抗失稳能力相近,因此采用文中所提计算弹性常数方法后的构造性正交异性板可以等效于自加劲板用于静力分析和稳定性分析.  相似文献   

7.
九江长江公路大桥混合梁结合段构造分析   总被引:6,自引:2,他引:4  
九江长江公路大桥为主跨818m的大跨径单侧混合梁斜拉桥,其钢梁加劲过渡段采用T肋加劲、同时在端部增设板肋加劲的新型过渡方式。为研究结合部连接件受力分布及内力分担比例,选取包含结合段的主梁节段,建立考虑钢-混凝土间相对滑移和接触的实体-板壳有限元计算模型,对结合段受力性能进行分析。结果表明:承压板分担了约70%的轴压力,过渡段刚度变化较为均匀,应力过渡平顺,该桥结合段受力合理。  相似文献   

8.
以某公路斜拉桥为例,采用壳单元建立了斜拉桥索梁锚固区的有限元模型,对索梁锚固区最不利载荷组合作用下的应力分布进行了分析与计算.结果表明:索梁锚固区的加劲板边角处的von Miss应力值达到281MPa,是结构应力集中的区域.对加劲板结构进行了优化设计,降低了应力集中.  相似文献   

9.
板式加劲肋是钢结构桥梁中钢箱、钢塔以及钢拱等结构的基本组成板件,板式加劲肋的局部失稳是其主要的失稳破坏模式。为研究板式加劲肋的局部稳定性能,分别设计了变化板肋厚度与宽度2组板肋局部稳定试件进行轴压试验,并建立相应的有限元分析模型,计入本构关系、残余应力与局部初始几何缺陷对局部稳定性能的影响,得到板式加劲肋与三边简支板的局部稳定简化计算公式。试验与分析结果表明:①当板肋宽厚比小于16时,出现板肋与被加劲板的同时屈曲破坏,反之,则仅出现板肋的局部失稳破坏;②随着板肋宽厚比的增大,试件发生破坏时的失稳变形现象越来越明显,对于变板肋厚度试件,试件极限平均应力随着板肋宽厚比的增大,呈先增大后减小的趋势,对于变板肋宽度试件,极限平均应力随着板肋宽厚比的增大逐步递减;③当相对宽厚比大于0.91时,采用板肋加劲板构件中的板肋所拟合的三次多项式曲线高于其他规范曲线,当相对宽厚比小于0.95时,三边简支一边自由的简化模型所拟合的公式曲线与GB 50017-2017规范曲线、Eurocode 3曲线以及美国AISI规范曲线较为接近,在整个相对宽厚比范围内均高于中国钢桥规范与日本规范曲线;④采用构件中板式加劲肋拟合的公式可以更好地计算实际试件承载力,采用三边简支一边自由的简化模型拟合的公式则更安全,推荐采用三边简支板拟合公式进行计算。  相似文献   

10.
以某高速公路跨航道大桥为背景工程,着眼于钢-UHPC组合桥面板参与第一体系受力的关键参数,采用有限元分析软件ANSYS建立全断面节段模型,重点对比钢板和UHPC板厚度的影响、不同加劲肋形式的影响、不同加劲肋间距的影响和箱室中部不同剪力钉间距的影响,为组合桥面板设计优化提供方向。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号