首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
钢管混凝土桁式结构广泛应用于桥梁工程中。为探明钢管混凝土节点的破坏机理,得到其承载力计算方法,系统汇总了国内外报道的圆形和矩形钢管混凝土节点试验数据,并根据节点形状和支管受力形式,分为139个受压节点、16个受拉节点和38个K型节点,分析主管内填混凝土对节点构造、破坏模式和承载力的改善,提出钢管混凝土节点设计流程和承载力计算方法。研究结果表明:在满足节点构造和焊接要求前提下,主管表面钢板层状撕裂破坏、焊缝破坏和受拉支管背面主管顶板局部屈曲破坏可以有效避免。对于受压节点,空钢管节点可能发生主管侧壁屈曲或表面屈服线破坏,而主管内填混凝土后,其破坏模式变为横向局部承压破坏,承载力平均提高8.3倍,不需要进行受压节点验算;对于受拉节点,管内混凝土能提高节点受拉刚度,破坏模式趋于主管表面冲剪破坏;对于K型节点,承载力以受拉支管控制,主要发生主管表面冲剪破坏,其强度与支管有效宽度破坏相当,即实现节点和钢管杆件等强设计,此外,考虑主管混凝土抗剪贡献后,主管抗剪承载力提高1.1~1.3倍;提出了钢管混凝土节点设计流程,并给出其节点承载力计算方法,圆形和矩形钢管混凝土节点均以受拉支管控制,需进行主管表面冲剪破坏和支管有效宽度破坏验算,同时,矩形钢管混凝土节点还需进行主管间隙处剪切破坏验算。  相似文献   

2.
高速公路跨线桥黄延桥为(24+40+24)m连续刚构体系PBL加劲型矩形钢管混凝土组合桁梁桥。该桥主梁采用矩形钢管桁架和混凝土行车道板构成的组合桁梁;桥墩采用Y形双肢矩形钢管混凝土树状桥墩,下设菱形承台+钻孔灌注桩基础。在负弯矩区下弦杆和Y形桥墩的矩形钢管内设置PBL纵肋并灌注混凝土,形成PBL加劲型矩形钢管混凝土断面,以提高杆件承载力、改善受压钢管局部屈曲性能。为提高该桥PBL加劲型矩形钢管混凝土节点的承载力、改善节点的失效模式,采取主管内灌注混凝土和支管与主管同宽两项优化措施。混凝土桥面板通过上弦闭口PBL开孔预埋钢板连接件与主桁相连。桥墩通过纵、横向呈方格网络集中布置的PBL开孔钢板与承台固结。  相似文献   

3.
为确定支管设置切割孔和混凝土亏空的钢管混凝土空间相贯节点的承载力和破坏模式,以某上承式钢管混凝土劲性骨架拱桥为背景,针对其拱肋钢管混凝土空间KK形相贯节点,采用Abaqus软件建立有限元模型,分析带切割孔和混凝土亏空的节点的承载力和破坏模式,并研究切割孔参数对节点承载力的影响。结果表明:支管壁设置切割孔会导致钢管混凝土空间节点的承载力降低,破坏模式由支管屈服变为支管局部屈曲;钢管混凝土空间节点的承载力随切割孔直径的增大而降低,切割孔位置对承载力的影响较小;支管内混凝土亏空会导致钢管混凝土空间节点的承载力降低,破坏模式由支管屈服变为主管壁冲剪破坏。  相似文献   

4.
介绍了脱空钢管混凝土偏心受压有限元建模方法,提出了偏心受压脱空钢管混凝土考虑脱空率影响的核心混凝土应力-应变关系,并利用ANSYS程序对不同脱空率和偏心率的脱空钢管混凝土短柱进行非线性有限元计算。计算结果表明,脱空率和偏心率的增大明显地削弱了钢管对核心混凝土的套箍作用。最后,将计算结果与现有试验研究成果进行对比分析,两...  相似文献   

5.
为研究方钢管混凝土T型节点的力学性能,建立了钢管混凝土以及空钢管T型节点的有限元模型,对支管受拉时的疲劳性能及支管受压时的静力性能进行了有限元对比分析,采用二次外推法给出了节点不同位置的应力集中系数,并采用非线性分析得出了支管受压时的极限承载力。结果表明:主管内填混凝土节点的最大热点应力出现在主管表面支主管交界的角隅处;空钢管节点的最大热点应力出现在靠近支主管焊缝的支管上;主管内填混凝土能够显著降低节点的应力集中程度;钢管混凝土T型节点在支管受压时的承载力要显著高于空钢管节点。  相似文献   

6.
为改善钢管混凝土套箍效应和节点传力可靠性问题,提出PBL加劲型矩形钢管混凝土结构,从管壁局部屈曲力学性能、构件力学性能、界面力学性能和节点力学性能4个方面,对已有研究成果进行总结,并与传统的钢管混凝土结构进行对比,综述了不同结构的宽厚比限值、轴压强度、轴压稳定、抗弯性能、压弯性能、剪切-滑移本构关系、节点传力长度、疲劳荷载作用下钢-混界面黏结性能、节点静力性能和节点疲劳性能,系统地阐述了PBL加劲型矩形钢管混凝土结构的力学性能优势。结果表明:在轴压和压弯荷载作用下,由于混凝土的支撑作用,以及PBL纵肋的加劲和连接作用,钢管的宽厚比限值相比矩形钢管混凝土结构提高到2倍以上;PBL加劲型矩形钢管混凝土构件轴压承载力相比矩形钢管混凝土有所提高,同时,PBL纵肋保证了构件的完全黏结,组合作用得到发挥,结构的轴压和抗弯刚度也得到提高;PBL加劲肋孔中的混凝土榫提供了较大的抗剪承载力,界面强度相比矩形钢管混凝土提高2倍以上,剪切模量提高3倍以上,有效缩短了节点传力长度,且疲劳荷载作用下,界面性能更可靠;管内PBL纵肋的抗拔作用,可有效限制节点部位主管表面弯曲变形,使节点刚度和承载力得到提高,焊趾位置热点应力集中系数明显减小,疲劳性能得到改善。  相似文献   

7.
整体桥因其全周期寿命长、整体性好和养护费用低等特点,得到了广泛应用,但对其在地震荷载作用下的受力特点和变形规律还缺乏深入研究。基于此,以某整体桥为背景,制作桥台-H形钢桩试验模型,开展整体式桥台-H形钢桩-土体系抗震性能拟静力试验研究,分析桥台-H形钢桩的破坏模式、滞回性能、骨架曲线、水平变形和桥台转角等变化规律。试验结果表明:H形钢桩出现较大的负向残余变形,但负向加载下H形钢桩未出现破坏;台后、台底及桩顶土体均出现大范围脱空;试件的等效黏滞阻尼比约为0.35,具有良好的耗能能力;正向加载下试件的弹性抗弯刚度是负向的12.6倍,最大承载力是负向的3.85倍,台后土对试件的刚度和承载力影响显著;破坏时试件刚度减小至初始刚度的33%,退化不显著;相比位移延性和割线刚度,采用环线刚度分析其抗震性能更为合适,改进后的割线刚度能更准确地反映试件的刚度退化;考虑整体和局部累积变形的影响,大加载位移作用下,桩身出现较大的负向整体累积变形,且桩身沿深度方向多处出现局部累积变形;加载过程桥台仅发生刚体位移,正向转角逐渐增大,负向转角先增大后减小再转为正向倾斜。研究发现整体式桥台-H形钢桩-土体系拥有优越的抗震性能。  相似文献   

8.
钢管混凝土空腹结构的双重非线性简化分析方法   总被引:2,自引:1,他引:1  
采用考虑剪切变形的Timoshenko梁的刚度矩阵,用抗剪刚度和抗弯刚度之比来考虑剪切变形对抗弯刚度的影响,得出空腹结构连续化成一根杆件的刚度矩阵.在单元刚度计算时,弦杆(或柱肢)和腹杆均采用了有效轴压刚度,考虑了空腹结构组成杆件的初弯曲对整体结构稳定的影响.采用FORTRAN语言编制了程序.算例表明简化算法计算结果与传统杆系模型有限元方法计算结果吻合良好,用于钢管混凝土空腹结构的极限承载力分析,可大幅度减少单元数,从而简化计算,节省机时.探讨了相关屈曲和剪切变形对钢管混凝土空腹结构极限承载力的影响.研究结果表明,随着长细比的增大,剪切变形影响逐渐减小,随着弦杆与腹杆的面积比的增大,剪切变形影响增大.对于钢管混凝土格构柱,当λ1>λ(λ1为柱肢长细比;λ为柱整体长细比)时,发生柱肢局部屈曲失稳;当λ1<λ时,发生整体屈曲失稳;在λ1=λ及其附近时,柱肢与整体的相关屈曲最明显.  相似文献   

9.
受结构构造、施工方法及制作精度等影响,钢管混凝土桥梁节点区域传力较为复杂,压力荷载传递往往先由钢管或混凝土承担,经过一定长度后再由钢管和混凝土共同承担,钢管和混凝土非同时受压现象较为普遍。界面传力机理决定着非同时受压钢管混凝土构件、节点及界面抗剪连接件的工作特性。基于弹性连续介质层法,利用变形协调条件,建立了非同时受压矩形钢管混凝土界面传力理论分析模型,推导出剪力传递长度及界面纵向剪力的解析表达式。经有限元验证理论分析模型,进行了矩形钢管混凝土界面传力特性的敏感性参数分析,给出了矩形钢管混凝土剪力传递长度和界面纵向剪力的变化规律。结果表明:给出的界面相对滑移、界面纵向剪力、剪力传递长度等解析公式计算精度较高,可为钢管混凝土构件、节点及界面抗剪连接件的设计计算提供理论依据;剪力传递长度是反映钢管混凝土界面传力特征的关键指标,决定着钢管与混凝土协同作用范围及强弱;弹性工作阶段混凝土先受压和钢管先受压时界面剪力传递长度相等,与轴力无关,受界面剪切刚度影响规律相同;界面纵向剪力与轴力成正比;剪力传递长度随界面剪切刚度的增大而减小,与之呈负指数函数关系,随钢管、混凝土的轴压刚度增大而增大,与之呈...  相似文献   

10.
为进一步增大拱桥的跨越能力,结合劲性骨架钢筋混凝土拱桥的结构和施工特点,提出钢腹杆-劲性骨架混凝土(SRC)弦杆组合桁式拱圈结构,利用钢腹杆替代混凝土腹板,省去混凝土腹板的浇筑工作,并减轻拱圈自重以达到增大拱桥跨径的目的。为了解这种组合拱连接节点的受力特点,在钢腹杆-SRC弦杆组合拱桥试设计研究基础上,以弦杆外包混凝土厚度为主要参数,进行了3个组合拱节点及1个对比钢管混凝土节点的试验研究,并探讨了节点的失效机理。结果表明:组合拱节点首先发生弦杆外包混凝土开裂,最终发生钢管混凝土节点破坏;外包混凝土对受拉和受压腹杆的受力影响很小;相比钢管混凝土节点而言,组合拱节点受拉腹杆的接头刚度较大;弦杆外包混凝土的厚度只影响外包混凝土的开裂荷载,外包混凝土越厚,开裂荷载越大,但不影响组合拱节点的极限承载力;结合钢管混凝土劲性骨架混凝土柱的研究成果,建议组合拱节点的混凝土外包系数取0.50左右,其承载力可按照受拉节点发生冲剪失效模式和受压节点发生有效宽度失效模式进行计算,但其计算结果偏于安全。研究成果可为钢腹杆-SRC弦杆组合拱桥的设计提供依据,也可为类似连接节点的设计提供参考。  相似文献   

11.
为提高开孔板连接件(PBL)的抗剪性能,提出了带柔性套筒的复合型PBL连接件,并对其抗剪性能进行试验研究,建立复合型PBL承载力计算方法。基于贯穿钢筋弯拉受力模型,推导其抗剪作用表达式,得到PBL孔内应力扩散角对贯穿钢筋抗剪作用的影响规律。设计制作8个PBL推出试件并进行破坏试验,探究柔性套筒壁厚对复合型PBL抗剪刚度、承载能力、延性、破坏模式及孔内钢筋混凝土榫传力机制的影响。研究结果表明:极限状态下,复合型PBL的贯穿钢筋弯拉变形较大,荷载-滑移曲线呈现明显的强化特征,且连接件延性得到显著改善;与无柔性套筒的常规PBL比较,贯穿钢筋周围包裹2 mm壁厚套筒的复合型PBL极限承载力和相应滑移分别提高了40.0%和42.6%;继续增大柔性套筒壁厚,由于孔内混凝土榫的有效剪切面积削弱,且两侧混凝土对贯穿钢筋的局部支撑作用减小,连接件承载力有所降低,但延性得到持续改善。将试验结果与已有常规PBL承载力计算公式进行对比分析表明,以钢筋混凝土榫剪切变形为主的常规PBL承载力计算公式对复合型PBL抗剪承载力计算误差较大,相关公式计算值均小于试验实测值。结合复合型PBL传力机理,给出了考虑混凝土榫剪切作用、贯穿钢筋作用和混凝土板局部支撑作用的PBL承载力计算公式。与试验结果对比发现,所提承载力公式计算值与试验结果吻合良好,可用于复合型PBL抗剪承载力的确定。  相似文献   

12.
为避免或缓解拱肋钢管与混凝土界面的脱粘或脱空,对钢管混凝土拱桥中的拱肋和节点受力性能的不利影响,提出在钢管混凝土拱肋中设置PBL纵肋,形成一种新型的PBL加劲型钢管混凝土拱桥形式。结合青海省西宁市采用"PBL加劲型矩形钢管混凝土桁架拱桥"结构形式的某在建桥梁,首先从下层拱肋、桁架-拱组合体系两个层面对该桥进行受力分析;根据主桥结构的受力特点,采用有限元数值模拟方法,分别建立腹杆受力较大的节点的局部精细化有限元模型、典型拱肋节段模型,研究节点的局部受力情况、太阳辐射下拱肋钢管与混凝土的界面受力性能。研究表明:梁肋在靠近拱顶附近时的轴向压力最大,此后其轴力迅速变小;拱顶处的拱肋轴向压力最小,此后迅速增大,并在拱脚处达到最大;腹杆作为梁肋与拱肋之间的传力构件,将整个结构连接成整体,使整个桁架结构共同受力;靠近拱顶、且腹杆受力较大的节点受力较为复杂。设置PBL纵肋能明显减小节点的传力长度、缓解节点的应力集中和变形程度,从而改善节点的受力性能;能明显缓解太阳辐射作用下钢管与混凝土的脱粘和脱空,从而保证拱肋的运营安全;该桥不仅满足使用功能的要求,与环境协调、造型美观,且受力较为合理,整体应力水平不高,满足安全的要求。  相似文献   

13.
侵蚀环境下高性能钢结构普遍存在局部锈蚀病害,这将削弱结构的整体承载能力。为了研究局部锈蚀对钢结构承载力的影响程度,设计制作了7片H形Q550E高性能钢梁,研究不同局部锈蚀对高性能钢梁抗弯性能的影响。首先对其中6片试验梁的弯剪段和纯弯段开展了不同锈蚀率的加速锈蚀,另1片为未锈蚀对比梁。接着,对试验梁开展四点弯曲分级加载试验,采集并对比分析了试验梁关键截面的应变和挠度数据。结果表明:锈蚀导致试验梁的承载力、屈服挠度、极限挠度和延性降低,相同锈蚀率下纯弯段性能降低程度大于弯剪段;右半截面承载力比下半截面降低程度更大;所有试验梁均为受压翼缘屈曲失稳破坏;SCR梁屈曲发生在弯剪段,其他试验梁屈曲位置位于纯弯段;弹性阶段腹板应变符合平截面假定,试验梁受拉翼缘一般先于受压翼缘屈服,因此随着荷载的增加,会出现截面中性轴上移现象;整体锈蚀比纯弯段下半截面锈蚀时的剩余承载力低,主要因为整体锈蚀时受压翼缘存在锈蚀削弱,导致试验梁屈曲提前,承载力降低;局部锈蚀的不均匀性会产生翼缘应力集中,导致PCR试验梁比整体锈蚀梁承载力低;与普通钢梁相比,锈蚀对于高性能钢梁承载力退化影响更大;对于顶板和底板锈蚀,梁的剩余承载力与其锈蚀程度为线性关系。  相似文献   

14.
横肋波纹板-方钢管(CPST)约束混凝土柱是由横肋波纹板与四角钢管焊接而成,并在腔内浇注混凝土形成的横肋波纹板约束核心混凝土、方钢管与混凝土共同承担轴向荷载构件。为了研究横肋波纹板-方钢管约束混凝土短柱的轴压性能,开展了3根横肋波纹板-方钢管约束混凝土短柱轴心受压试验。由于横肋波纹板具有较高的侧向刚度,核心混凝土能够得到较好的约束,但波纹板基本不承担轴向荷载,试件最终的破坏形式依次为方钢管局部屈曲、横肋波纹板向外鼓曲、方钢管内混凝土及核心混凝土均被压碎。在此基础上,利用ABAQUS分析了6类关键参数:混凝土的强度、正方形钢管/横肋波纹板的壁厚和抗压强度、钢管的截面尺寸。研究结果表明:如果提高混凝土强度,则抗压承载力提高,而延性降低;方钢管的厚度增加对柱的承载力和延性均有提升;方钢管的强度变高,承载力也随之提高;如果增加横肋波纹板的厚度,则承载力、延性都提高;横肋波纹板强度的变化对承载力影响不大,对延性有所提升;随着方钢管外截面尺寸变大,承载力呈现出提高的趋势。最后,基于Mander等提出的约束混凝土抗压承载力计算公式,通过引入综合影响变量,提出了计算横肋波纹板-方钢管约束混凝土短柱抗压强度的公式,期望为工程实践提供指引。  相似文献   

15.
为研究Q550E高性能钢结构锈蚀后的力学性能,制作7片锈蚀H形高性能钢梁,利用通电加速腐蚀的方法对钢梁进行锈蚀,通过抗弯性能试验,分析锈蚀对高性能钢梁的应变、挠度、承载力以及刚度退化等的影响。试验研究表明:锈蚀显著降低了高性能H形钢梁的承载力,锈蚀率每增加1%其屈服荷载与极限荷载大约减少11 kN;随着锈蚀率的增加,钢梁延性系数均呈下降趋势;钢梁的锈蚀降低了梁的实际屈服强度,使局部屈曲提前发生;试件在达到极限荷载前应变基本符合平截面假定,表明锈蚀基本上不改变高性能钢结构的应变分布;在弹性阶段的钢梁抗弯刚度将会发生退化,其退化速度与锈蚀率呈线性关系。  相似文献   

16.
在管节点疲劳破坏的研究中,应力集中系数是评价其疲劳寿命的重要参数之一。应力集中系数一般通过实验及精细的有限元模型得到,本文利用精细的有限元模型计算得到。运用有限元软件ANSYS对K型空心钢管,钢管混凝土节点进行计算,研究节点在支管轴压,主管轴压,共同作用下对钢管混凝土节点及其应力集中系数大小与分布的影响。  相似文献   

17.
李保军  钟毅  张冬梅 《隧道建设》2020,40(Z2):67-75
为研究螺栓锈蚀对隧道服役性能的影响,通过考虑不同荷载类型和偏心距的情况,采用数值模拟的方法对连接螺栓锈蚀后盾构隧道接头极限承载力和抗弯刚度的变化进行分析,并与模型试验数据进行对比。通过对比分析发现: 1)螺栓锈蚀后受压区混凝土和螺栓屈服时的接头弯矩有所降低,结构弹性极限降低。2)在结构弹性阶段,螺栓锈蚀基本不会影响管片的接头抗弯性能; 在塑性阶段,螺栓锈蚀会使接头的变形增大,接头抗弯刚度降低。3)螺栓锈蚀会降低接头的极限承载力,极限承载力的退化程度与螺栓锈蚀率有关,与螺栓锈蚀范围的大小无关; 在负弯矩工况中,螺栓锈蚀还会改变接头的破坏状态。  相似文献   

18.
顶管法施工逐渐朝着向大直径、高埋深等趋势发展,容易在施工过程发生屈曲破坏。采用有限元分析软件ABAQUS建立大直径钢顶管简化模型,采用BUCKLE和RIKS 法对钢管进行弹性和弹塑性屈曲分析。探讨出壁厚对钢管稳定性的影响以及钢管在轴压和围压作用下的屈曲模态。结果显示:壁厚是影响钢顶管极限承载力的重要因素;围压作用下的钢管屈曲模态呈现局部屈曲,轴压作用下的屈曲模态和欧拉管一致。  相似文献   

19.
经合理设计的防落梁限位装置可以有效减小地震发生时桥梁上、下部结构间的相对位移,阻止落梁破坏的发生,而明确限位装置力学性能是对其进行合理设计的必要前提。为探明缓冲型防落梁钢圈限位装置的滞回性能和破坏模式,并提出极限位移和极限承载力的计算方法,制作了6个试件进行拟静力试验研究。分析了钢材种类、限位装置截面高度h和直线段长度a等设计参数对其力学性能的影响,试验结果表明:①在初期的加、卸载过程中,试件以弯曲变形为主,刚度及承载力低。由于弧段部位过早出现塑性,卸载后出现永久性变形;试件在反复加载过程中,累计塑性变形增加,后期以拉伸变形为主,刚度大。试件达到最大承载力后,发生颈缩、断裂破坏,最终丧失承载能力。②分析试件圆弧段测得的应变,加载初期内侧受拉,外侧受压;随着位移的增加,弧段外侧达到最大压应变后,试件被拉直,中性轴偏离截面形心;破坏时,试件各部位均出现较大的拉应变。③参数a对试件启动限位功能时机影响较大,对试件初期刚度几乎没有影响;参数h增加时,承载力的增长速率、初期刚度以及最大承载力均增加,但对位移影响较小;改变钢材种类对承载力影响较大,对位移影响较小。在试验研究的基础上,提出了该类限位装置的极限承载力与极限位移计算公式,并验证了计算公式的有效性。  相似文献   

20.
采用有限元软件,合理选用边界条件、加载方式、单元形状与类型、材料以及几何非线性等建立有限元模型,以试验结果[1]为基础,验证了模型的可靠性。参数化分析结果表明,被搭接支管受压时,其隐蔽部分是否焊接对节点承载力影响不大,被搭接支管受拉时,隐蔽部分是否焊接对节点承载力有较大影响。几何参数β(支管主管直径比)、γ(主管径厚比)对平面KT型圆钢管搭接节点承载力有显著影响,且β、γ两者对节点承载力也相互影响。γ较小时,τ对节点承载力有显著影响,γ较大时,τ对节点承载力影响不大。搭接率Ov对节点承载力影响不显著。利用多元线性回归分析技术,对有限元参数化分析结果进行回归分析,得到平面KT型圆钢管搭接节点承载力参数公式,最后,从适用性、安全性、连续性等方面验证了参数公式的可靠性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号