首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《公路》2018,(12)
为研究季节性寒区隧道围岩温度场的变化规律,以吉林图珲高速东南里隧道为依托,通过ANSYS建立数值模型,分析了深埋和浅埋条件下围岩的温度随保温层厚度的变化规律。结果表明,相同时刻沿衬砌表面从拱脚到拱顶路径的温度值不断减小,在拱顶位置处达到最小值;隧道衬砌及背侧一定深度内围岩各点的温度时程曲线呈正(余)弦函数变化,并且随着距衬砌表面距离的增大,围岩温度时程曲线呈现出的正(余)弦波动趋势越不规则,振动幅度也逐渐减小;保温层安装位置对围岩温度场的影响较小,而围岩最低温度的变化则主要集中于前5年内。在隧道防抗冻设计中,保温层厚度不能一味增大,应根据现场的岩体和温度选取经济有效的保温方法。  相似文献   

2.
黄土公路隧道衬砌受力特性测试研究   总被引:24,自引:7,他引:24  
通过对浅埋黄土公路隧道衬砌受力现场测试,研究了隧道衬砌围岩压力、钢花拱轴力和二次衬砌混凝土应变随时间变化以及不同位置分布情况。结果表明:拱部和边墙围岩压力先是增大后减小然后趋于稳定,隧道周围土体有局部坍塌的可能,按实测值推算的竖向围岩压力小于按已有公式计算的值,钢花拱轴力稳定较快且以受压为主,二次衬砌和仰拱的承载作用并不明显。  相似文献   

3.
武靖高速公路莲荷隧道右线进口地表倾斜,存在较大偏压,按照传统进洞方法,洞口边仰坡开挖量大。根据莲荷隧道地形地质特点,采用套拱结合护拱的半明半暗结构,在地表倾斜条件下实施了零开挖进洞,极大地减少了洞口开挖,保护了环境。通过数值计算得出该方案下围岩变形及衬砌结构受力特征,对比现场监测结果,验证了方案的可靠性。  相似文献   

4.
季节性寒区隧道温度场随时间和空间不断变化,为明确季节性寒区隧道温度场的三维时空变化规律,为季节性寒区隧道防冻保温设计提供依据,依托某季节性寒区公路隧道设计了现场监测方案,在隧道洞口段一定范围内布置了5个环境温度场测试断面和2个围岩温度场测试断面,采用现场监测方法获取了隧道洞内环境温度场和围岩温度场随时间和空间的变化规律,在此基础上分别建立环境温度场和围岩温度场时空分布的统计模型,并推导了围岩冻结深度随时间和空间的变化规律。结果表明:隧道环境温度与时间和隧道进深具有三维变化关系,同一个监测断面温度与时间呈正弦函数变化,多个断面平均温度随着隧道进深呈近似线性变化,多个断面的温度振幅随隧道进深呈对数函数变化;隧道围岩径向温度与时间、隧道进深和围岩径向深度3个指标均有关系,同一断面围岩温度随时间也具有正弦变化特征,围岩温度幅值随围岩径向深度增大呈指数规律降低,达到一定深度后温度幅值为零,围岩平均温度呈对数规律变化;围岩冻结深度随时间呈周期性变化,随隧道进深增加呈减小趋势。研究结果可为季节性寒区隧道防冻保温设计提供指导。  相似文献   

5.
隧道洞口段的抗震设防长度   总被引:10,自引:0,他引:10  
运用Newmark隐式时间积分有限元法并采用粘-弹性人工边界,进行了隧道三维地震反应分析。在不同的围岩材料、衬砌类型情况下,分析了隧道洞口段衬砌应力和位移沿隧道轴线方向的变化规律以及采取注浆加固围岩方法的减震效果。计算结果表明:抗震设防长度主要与洞口段围岩性质有关,洞口段松软、破碎的围岩越长,隧道的设防长度就越长;隧道的断面形式以及洞口段临空面的存在与隧道的设防长度关系不大;在地震荷载作用下,洞口段隧道衬砌产生了很大的轴向应力;可采用注浆加固洞口段围岩的方法减小洞口段衬砌的应力和位移。  相似文献   

6.
季节性寒区隧道在冬季通常气候条件恶劣,常面临冻害问题,进而对隧道的施工和运营的安全造成威胁。通过数值模拟探究了某季节性寒区隧道冬季施工期温度分布规律及围岩温度影响深度的影响因素。研究结果表明:隧道已施作二次衬砌区段和未施作二次衬砌区段的围岩温度影响深度分别为9m、10m,未施作二次衬砌区段围岩对温度变化较敏感。对于已施作二次衬砌区段,温度影响深度大致相同,并且随开挖长度增加而减小,随进口风速的增大而增大,随围岩与外界温差增大而增大。对于没有施作二次衬砌区段,围岩的温度影响深度随隧道开挖长度增加减小,随围岩与洞外温差增大而增大,但不受进口风速影响。  相似文献   

7.
郑波  吴剑  陈建平 《隧道建设》2017,37(7):864-871
为解决寒冷地区隧道内部产生的冰害问题,以东北地区某铁路隧道为例,采用综合分析的方法,对案例隧道洞口衬砌开裂、渗水以及道床冰害产生的原因进行研究,并提出相应的整治措施。研究结果表明:1)隧道洞口围岩衬砌开裂主要由围岩冻胀力引起,采用喷涂保温层+防火砂浆的保温措施以及锚杆补强和裂缝嵌补的结构措施可以有效避免衬砌的开裂;2)引起道床冰害的洞内水主要来源于洞口路堑的积雪融化水和仰拱局部渗水,采用双侧水沟布设电加热设施、洞口道床底部设置小型挡水坝并加设横向电加热设施和进口路堑位置及路堤零填段设置挡雪设施的措施可以有效解决道床冰害问题。  相似文献   

8.
为了研究运营地铁通缝拼装盾构隧道长期沉降过程中衬砌结构横向变形对其纵向变形和受力的影响,基于上海轨道交通8号线西藏北路站—中兴路站运营盾构隧道现场试验监测数据,对等效连续化模型进行修正,考虑隧道收敛变形对结构纵向变形的影响,并将该计算方法与现有计算方法进行对比分析。结果表明:1)弯曲状态下,环缝位置不考虑剪切作用时,随着隧道收敛变形的增加,拱底环缝张开量最大值、管片拉压应力和螺栓拉应力均略有减小。2)结构纵向变形曲率半径越小,隧道收敛变形对其影响越显著。3)在大曲率半径隧道结构纵向变形状态下,隧道收敛变形对结构纵向变形的影响可以忽略;不考虑轴向拉伸导致结构纵向变形条件下,结构弯曲导致的拱底环缝张开量较小。  相似文献   

9.
为探究偏压隧道的适宜工法并针对偏压特性对支护结构进行非对称优化,基于九绵高速福隆隧道,通过现场监测深浅埋侧非对称周边收敛与地表变形,建立三维山体隧道模型,进行不同工法围岩、支护结构受力变形比选分析以及初期支护厚度、锚杆长度与倾角的非对称优化设计。相关研究表明:1)现场监测发现,地表沉降与周边收敛非对称特性明显,随着离隧道正中距离的增大,深埋侧地表沉降较浅埋侧数值减小较慢。深埋侧上拱腰收敛数值最大且波动较大,浅埋侧下拱腰收敛增速较慢。2)偏压隧道较适宜工法为CD法,能有效控制围岩支护结构变形、锚杆应力、初期支护压应力以及塑性区分布。3)初期支护非对称优化结果为将浅埋侧初期支护厚度减小2cm,深埋侧增大2cm,能将二次衬砌拉应力控制在较小数值。4)锚杆长度非对称优化结果为将浅埋侧锚杆长度减小0.5m,深埋侧增大0.5m,使锚杆受力更为均匀并减小右上拱肩与左下拱脚的塑性区。初期支护应力在右上拱肩与左下拱脚处存在显著偏压,通过将右上拱肩处锚杆朝深埋侧倾斜能一定程度减小初期支护受力不均匀。  相似文献   

10.
大坂山隧道经过8年多的运营,出现了较严重的病害,如衬砌开裂、严重渗漏水、混凝土冻害和劣化等,在对隧道进行检测的基础上,对隧道病害进行了有针对性的整治设计,整治后的隧道套拱段滴水不漏,且隧道结构得到了有效加固,非套拱段只有3处渗漏水;同时在隧道整治时增设套拱背后混凝土温度观测系统,对衬砌混凝土温度进行长期观测,为掌握衬砌混凝土冻害提供基础数据。  相似文献   

11.
《公路》2018,(11)
为探究多年冻土及季节性冻土区隧道环境及围岩温度的分布规律及其影响因素,依托吉林省图珲高速公路东南里隧道工程,现场开展隧道洞外、洞内气温测试及围岩温度测试,采用三角函数对温度测试结果进行拟合;通过ANSYS建立数值模型,对年平均气温、年温度振幅、隧道埋深和围岩的热物理参数及对流换热系数等温度场影响因素进行了正交试验。研究结果表明,隧道内气温随着距洞口距离的增大而增加,隧道洞口最大冻结深度不超过2.4m,隧道内温度及围岩温度随着时间的变化规律大致符合正弦曲线;年平均气温、年温度振幅、隧道埋深是隧道温度场的主要影响因素,而围岩的热物理参数是隧道温度场的次要影响因素。  相似文献   

12.
针对目前寒区隧道保温排水设施缺乏系统设计标准的问题,结合寒区分区及隧道保温排水技术现状,通过调研东北及华北北部地区寒区铁路隧道冻害情况,提出按气温条件的寒区铁路隧道设计分区方法;通过分析保温排水设施的适用条件,结合运营铁路隧道内及排水设施内的温度实测分析,提出不同分区的寒区隧道保温排水措施设置建议长度。结果表明:1)寒区铁路隧道可按年平均气温和最冷月平均气温划分为5个分区; 2)高式保温测沟仅在温度较高的寒区适应; 3)洞口一定范围段的水沟埋置于结构以下是寒区保温排水的有效手段; 4)长隧道洞身段采取保温措施后可以将水沟置于结构内; 5)有条件时长隧道宜采用人字坡,并加大隧道内的纵坡坡度,有利于改善排水条件,防止水沟冻结。  相似文献   

13.
利用有限元数值模拟分析了两组工况下偏压隧道的围岩变形及隧道衬砌受力情况,结果表明:衬砌外荷载主要由上覆岩土体自重以及围岩沿着潜在滑移面产生剪切变形形成,剪切变形对围岩及衬砌受力影响显著。在平行于偏压面岩层与衬砌交界处(浅埋侧拱脚、深埋侧拱肩)的内力明显突变。地表注浆加固在一定程度上改善了围岩物理力学特性,减小偏压引起的剪切变形,有利于围岩稳定及隧道衬砌受力。  相似文献   

14.
采用有限差分软件FLAC3D 3.0研究隧道洞口段的抗震设防长度和衬砌刚度对地震反应的影响,分析设置横向减震层、纵向减震层和加固围岩对衬砌结构的减震效果,并总结山岭隧道洞口减震的思路和措施.结果表明:一般进入洞内25~30 m后地震放大效应开始趋于平稳,该距离可为确定洞口抗震设防长度参考;衬砌刚度过大在一定程度上将加大震害;设置横向减震层和纵向减震层都能使地震反应明显减弱,使应力分布更趋均匀,且前者效果明显好于后者;通过设置锚杆增强围岩整体性,可有效减少作用在衬砌上的地震荷载,且对软质围岩效果更佳.最后,提出山岭隧道洞口必须综合减震,衬砌应该刚、柔平衡.  相似文献   

15.
为研究覆有厚层松散堆积体且穿越软硬交界面的隧道洞口段动力响应特点和抗减震措施,以飞仙关隧道洞口段为研究对象,采用有限差分软件分别建立隧道围岩渐进式注浆、设置减震缝和全环注浆3种工况,并和无措施情况下隧道衬砌的应力、变形对比,得出最佳抗减震措施。研究结果表明: 1)在强震作用下衬砌的纵向变形远远小于横向变形,且全环注浆对限制衬砌的横向变形效果最显著,单独设置减震缝对衬砌变形的限制效果较差; 2)隧道右拱脚和右拱腰是强震作用下结构破坏的最危险位置,需着重加强这2处的抗震加固; 3)全环注浆能够有效减小衬砌应力,同时还能使交界面附近应力变化连续而平稳。  相似文献   

16.
大跨连拱隧道洞口浅埋段施工监控分析   总被引:1,自引:1,他引:0  
针对大跨连拱隧道洞口浅埋段的特殊地质,以温州绕城高速公路北线陈家桥大跨度连拱隧道为依托,选取典型断面开展施工监控,及时了解该隧道在洞口浅埋段的施工动态,分析太跨连拱隧道洞口浅埋段的围岩及衬砌的受力情况,保障隧道施工的安全和质量。  相似文献   

17.
针对高温多年冻土区隧道传热模型及温度场分布规律开展深入的理论分析、数值模拟和现场监测研究。首先,基于热传导理论,建立隧道衬砌和围岩径向传热模型,利用叠加原理和拉普拉斯变换法求得寒区隧道衬砌和围岩的温度场理论解;其次,建立洞内空气的传热微分方程,根据能量守恒原理,建立隧道纵向洞内空气与洞壁的气-固耦合传热模型,结合径向温度场理论解,提出多年冻土区隧道衬砌、围岩及洞内空气的三维温度场计算方法,该计算方法可考虑围岩、衬砌、保温层等多层传热介质及隧道沿洞轴线的不同埋深;最后,根据依托工程现场实测数据,反演围岩的热物性参数,并运用推导的隧道纵向传热模型和横向传热模型,分析姜路岭隧道不同冻土区内衬砌和围岩中的温度场分布规律。研究结果表明:在隧道径向,多年冻土和非冻土围岩温度都会随洞内气温的变化而产生波动,距离围岩表面越近,温度振幅越大,且热量在围岩径向传递过程中有一定的滞后性;在隧道纵向,在一年中最冷时刻,隧道衬砌及围岩温度呈“两端低,中间高”,此时姜路岭隧道围岩、二衬表面最高温度分别为-2.72℃,-7.80℃;在一年中最热时刻,衬砌温度呈“两端高,中间低”,此时姜路岭隧道二衬表面最低温度为1.92℃,但由于受围岩初始地温的影响,围岩表面的温度呈倒V形,最低温度为-1.22℃。  相似文献   

18.
为了解决寒区隧道温度场的预测问题,为寒区隧道抗冻设防提供指导,结合传热学、流体力学的基本方法,根据能量守恒原理,推导寒区隧道风流温度场的传热模型,并在此基础上,借助有限差分方法,探讨通风和围岩条件对寒区隧道温度场分布的作用规律。研究结果表明: 1)入口风温越低,风流速度越大以及断面越大,相同位置处洞内温度越低,这是由于进入洞内的冷空气更多,入口风温每降低5 ℃,同位置洞内风流温度平均降低3. 8 ℃; 2)风流温度决定了离壁面一定范围的围岩温度大小,风流温度越低,冻结深度与受到影响的围岩范围更大; 3)初始岩温越大,围岩温度分布曲线越陡峭,围岩导热系数则相反,且初始岩温每增加 5 ℃,冻结深度减少0. 24 m,受影响的围岩径向深度减少0. 32 m。  相似文献   

19.
不同应力场软弱围岩隧道施工力学特征的数值分析   总被引:2,自引:0,他引:2  
岩体内部的初始应力及隧道开挖后的围岩应力是隧道工程的关键影响因素,为了更全面地了解不同应力场软弱围岩公路隧道施工的力学特征,建立有效的有限元模型,采用不同加载方式,模拟不同应力场,对软弱围岩公路隧道施工过程中隧道围岩位移和应力变化特征及其影响范围进行了详细分析,并对衬砌结构的受力特征进行深入研究.结果表明:不同应力场决定了隧道施工过程中围岩塑性区的大小和位置,这也就决定了隧道施工中重点监控的位置;在不同应力场隧道开挖完成后,拱上20 m水平面围岩竖向位移、拱上中心线围岩竖向位移及仰拱底围岩竖向位移随着侧压力系数的减小而明显增大,拱腰处围岩水平位移则随着侧压力系数的减小而明显减小;应力场对衬砌结构的内力影响很大.  相似文献   

20.
采用模型试验方法,研究分析了Ⅳ级围岩条件下隧道开挖后,因降雨而引起的隧道塌方.试验结果表明,随着水的人渗,地表位移逐渐增加,隧道塌方前,地表位移增加趋势明显,塌方后,隧道侧壁垂直应力及水平应力减小,拱底垂直应力增大,且距隧道越近的测点应力变化幅度越大.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号