首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 922 毫秒
1.
都香高速金沙江大桥主桥采用跨径布置为(340+72+48+32)m的独塔斜拉桥。主梁采用钢-混混合梁,主跨为分离式双边箱的PK钢箱梁,边跨为整体式混凝土箱梁,钢-混结合面位于主跨距桥塔中心线12.4m处。桥塔采用钻石形混凝土结构,总高197.6m,其下布置整体式承台,钻孔灌注桩群桩基础。斜拉索按空间扇形双索面布置,每个空间索面设20对斜拉索,斜拉索采用1 770MPa高强度低松弛平行钢丝束。塔上索距为2.0~4.0m;梁上索距在钢箱梁段为16m,在混凝土箱梁段为8m、4.5m两种。塔端采用预应力锚固,梁端采用钢锚箱锚固。该桥桥塔采用爬模法施工,钢梁采用悬臂拼装法施工,混凝土箱梁采用支架现浇施工。  相似文献   

2.
新沙哈·阿曼纳特大桥主桥为(115+3×200+115)m连续预应力箱梁矮塔斜拉桥.主梁采用带箱内斜撑的单箱单室薄壁箱梁;斜拉索采用单索面布置,在桥塔处从上塔柱转向鞍管穿过桥塔,两端锚固在主梁顶板与斜撑交汇处;桥塔由底座、下塔柱和上塔柱构成.上部结构箱梁0号块及1号块均在支架上现浇施工,墩顶临时固结形成T构,其它节段采用三角挂篮对称悬臂浇筑施工,合龙段采用合龙吊架施工,箱梁边跨现浇段采用支架现浇施工;桥塔采用定型钢模分次浇注施工;为便于箱梁现浇挂篮的安装,斜拉索施工滞后箱梁施工1个节段.该桥的结构特点最大限度地发挥了矮塔斜拉桥的工程经济性.  相似文献   

3.
邓宇  漆勇 《中外公路》2011,31(4):90-92
嘉悦大桥位于重庆市北部,跨越嘉陵江,大桥采用主跨250m的矮塔斜拉桥方案,全桥总长774m.大桥主梁采用超大悬臂单室箱形截面,悬臂长度达8m.斜拉索采用环氧填充型钢绞线,最大索力达到1 100 t,可实现单根张拉、单根更换.斜拉索在桥塔端采用钢锚箱与混凝土组合锚固体系,在梁上锚固于箱梁翼缘端部位置.设计采用人车分流的双...  相似文献   

4.
荆岳长江公路大桥设计   总被引:1,自引:1,他引:0  
根据荆岳长江公路大桥桥址处自然环境条件,主桥采用主跨816 m双塔双索面六跨不对称混合梁斜拉桥;桥塔为双柱H形,北塔采用双圆形分离式基础,南塔采用矩形分离式承台+群桩基础;主梁采用分离式双边箱梁结构,中跨和北边跨采用扁平钢箱梁结构,南边跨采用PC箱梁结构,钢-混凝土结合段采用带钢格室的部分连接填充混凝土方案;斜拉索采用外缠PVF氟化膜的高强平行钢丝索,除桥塔附近几对大倾角斜拉索直接锚固在混凝土塔壁齿块上外,其余均采用钢锚梁锚固型式。  相似文献   

5.
商合杭铁路芜湖长江公铁大桥受建设条件限制,主桥设计为主跨588m的非对称矮塔斜拉桥。主梁采用双层桥面箱—桁组合结构钢梁,下层铁路桥面为钢箱结构,上层公路桥面为密横梁体系的正交异性钢桥面板结构。该主梁结构具有强箱弱桁的受力特性,解决了该桥塔矮、索平以及主梁水平轴力大的问题。斜拉索采用抗拉强度2 000MPa的高强度锌铝合金镀层平行钢丝拉索,以承受高达1.5×10~4 kN的斜拉索轴力。将斜拉索锚固于主梁下弦,使斜拉索获得相对较大的倾角从而提高结构体系刚度。芜湖侧桥塔墩基础采用平面尺寸为65m×35m的大型设置沉井基础,克服了该侧桥塔墩基础深水、裸岩的困难建设条件。  相似文献   

6.
成昆铁路攀枝花金沙江大桥采用跨径布置为(120+208+120)m的预应力混凝土矮塔斜拉桥。主梁采用变高度单箱双室预应力混凝土箱梁;桥塔采用H形钢筋混凝土结构,桥面以上塔高28m,塔高与跨径之比为1/7.5;斜拉索采用1 860MPa环氧涂层钢绞线,斜拉索穿过塔上分丝管索鞍后锚固于主梁上。该桥采用塔梁固结、墩梁分离的三摩擦副双曲面摩擦摆减隔震支座+剪力榫组合支承体系,不仅解决了桥梁的抗震,还有利于列车的平稳运行和梁端伸缩装置的设置;针对矮塔斜拉桥的特点,基于索梁活载比确定斜拉索索力和梁体预应力钢束的配置。对该桥进行车-桥耦合动力分析,分析结果表明桥梁的动力性能和列车过桥时的安全性与舒适性均满足规范要求。  相似文献   

7.
沪蓉高速公路铁罗坪大桥设计   总被引:1,自引:0,他引:1  
铁罗坪大桥主桥为预应力混凝土双塔双索面斜拉桥,跨径布置为(140+322+140)m。该桥主梁基本断面形式为边主梁;桥塔为H形,总高190.397m,塔柱采用空心五边形断面,在上塔柱锚固区采用U形预应力束加强,桥塔墩基础由24根2.4m的桩基组成;每个桥塔两侧布置19对斜拉索,斜拉索采用低松弛镀锌高强钢丝。从温度作用、汽车荷载作用、成桥阶段稳定系数方面对2种结构体系(墩塔梁固结体系和飘浮体系)进行比选,最终选择了对结构受力更为有利的墩塔梁固结体系。采用MIDAS Civil软件分别对该桥静、动力特性、抗风稳定性及地震反应进行分析,分析结果表明结构受力均满足规范要求。该桥主梁采用悬臂浇筑施工,合龙顺序为先边跨、再中跨。  相似文献   

8.
无锡市清宁大桥主桥为主跨113m的矮塔斜拉桥,跨越京杭大运河,该桥为单索面、主梁为预应力混凝土单箱三室箱形梁,桥梁全宽30m。拉索为平行钢丝斜拉索、冷铸锚,主塔为钢筋混凝土结构,主塔锚固区采用钢锚箱的锚固方式。  相似文献   

9.
丹江口水库特大桥采用跨径布置为45.8 m+(106.2+760+106.2) m+45.8 m的双塔部分地锚式混合梁斜拉桥,梁塔分离、梁台固结。主梁采用混合梁,宽31.6 m,主跨创新地采用分离式双钢箱+正交异性钢-UHPC组合桥面结构轻型组合梁,并在跨中采用具有阻尼锁定功能的无轴力连接装置;边跨采用预应力普通混凝土边主梁;钢-混结合面设置在主梁主跨距桥塔20 m处。桥塔采用下塔柱内收的H形塔,桥塔基础采用整体式承台+大直径群桩基础。桥台创新地采用重力-碳纤维增强复合材料岩锚组合式地锚桥台。斜拉索采用标准抗拉强度为1 860 MPa的?7 mm平行钢丝索,桥塔每侧设24对斜拉索,边跨斜拉索12对锚固于梁上、12对锚固于地锚桥台上,在桥塔处设竖直0号斜拉索作为竖向支承。  相似文献   

10.
八里湖大桥主桥为主跨132m的三塔部分斜拉桥,主梁采用C55混凝土双箱式边主梁型式(设纵、横向预应力),采用支架现浇法施工.先浇筑箱梁,然后挂设斜拉索(张拉20%索力),再张拉箱梁横向预应力.为了验证施工工序的合理性,利用ANSYS有限元程序建立16号墩两侧支架模型,模拟其施工过程,分析了横向预应力张拉和斜拉索挂设施工对支架钢管桩反力和箱梁应力的影响.结果表明,钢管桩反力和箱梁应力均满足规范要求,施工工序合理.  相似文献   

11.
波形钢腹板矮塔斜拉桥静力特性分析   总被引:1,自引:0,他引:1  
分别以主跨180 m的波形钢腹板矮塔斜拉桥和PC箱梁矮塔斜拉桥为研究对象,通过数值模拟分析,比较2种不同主梁的矮塔斜拉桥在恒裁、预应力荷载以及温度荷载作用下结构的受力特性.结果表明,与PC箱梁矮塔斜拉桥相比,虽然波形钢腹板矮塔斜拉桥由混凝土收缩徐变引起主梁钢束预应力损失大,但其主梁的预应力效率更高,成桥状态下预应力储备...  相似文献   

12.
重庆双碑大桥主桥斜拉桥设计   总被引:2,自引:2,他引:0  
重庆双碑大桥主桥为主跨330 m的高、低塔中央索面混凝土曲线斜拉桥。主梁采用单箱三室混凝土结构。桥塔采用独柱式,低塔边跨侧位于曲线上,为减少索的横向分力对结构的影响,靠曲线外侧布置竖向预应力钢绞线束。斜拉索采用高强低松弛镀锌钢绞线索。结合地质情况,高塔墩采用24根φ2.5 m钻孔灌注桩基础;低塔墩采用明挖扩大基础。高、低塔均采用塔、墩、梁固结体系。为减少塔根弯矩,下塔墩中间设20 cm的竖缝;通过优化桥塔尺寸,有效控制了主梁横向扭转角和桥塔横向位移。高塔墩基础采用双壁钢围堰法施工,低塔墩基础采用围堰或筑岛辅助施工;主梁7 m标准节段采用前支点挂篮现浇施工。  相似文献   

13.
吴进来 《交通科技》2012,(4):36-37,41
我国斜拉桥中大部分采用预应力混凝土索塔.索塔锚固区域结构受力复杂,是设计的关键.某大桥采用独斜塔,主、边跨非对称布置斜拉索结构.文中采用有限元方法对某大桥主塔锚固区进行了受力分析,以根据应力大小指导钢束配制.  相似文献   

14.
漳州战备大桥为双塔单索面三跨连续矮塔斜拉预应力混凝土箱梁桥,主桥孔跨布置为(80.8+132+80.8)m,采用塔梁固结,塔梁与墩分离,墩顶设支座的结构形式。主要介绍主梁、主塔及斜拉索等方面的设计。  相似文献   

15.
张鹏 《城市道桥与防洪》2020,(5):66-68,M0009
洞口县平溪江大桥为主跨100 m的异形钢独塔斜拉桥,跨越洞口县平溪江。该桥为双索面,塔梁墩固结体系;主梁为两侧单箱单室P-K预应力混凝土混凝土箱形梁,桥梁全宽34.6 m。拉索为平行钢丝斜拉索,冷铸锚。主塔为异形钢箱结构,拉索通过钢锚箱锚固于主塔上。主跨跨越平溪江,采用悬臂浇筑法施工;锚跨位于岸上,采用现浇支架施工。  相似文献   

16.
为指导波形钢腹板矮塔斜拉桥施工,对该类型桥梁的施工全过程进行力学性能分析。以(58+118+188+108)m的朝阳沟特大桥为研究对象,采用MIDAS/FEA有限元软件建立有限元模型,对其施工全过程进行计算。计算结果表明:施工过程中张拉悬臂顶板预应力束使主梁悬臂端轻微下挠,对悬臂施工主梁悬臂端竖向变形的影响远小于张拉斜拉索和浇筑梁段混凝土产生的影响;悬臂根部顶、底板应力在合龙束张拉时应力增量较大,应在施工中重点关注;斜拉索索力受施工阶段的影响不大,索力分2次张拉调整到成桥索力是合适的;矮塔斜拉桥桥塔和主梁刚度较大,两桥塔塔顶位移在悬臂施工过程中基本为0,顶推力作用下一侧桥塔塔顶向边跨桥台侧偏位约5cm,另一侧桥塔塔顶向边跨桥台侧偏位约4cm,可抵消后期运营中桥塔向跨中的偏位。  相似文献   

17.
东明黄河公路大桥主桥为(75+7×120+75)m的预应力混凝土刚构-连续组合体系梁式桥,该桥运营多年后出现了梁体开裂和跨中下挠病害。为解决桥梁抗剪承载力不足和跨中下挠问题,主梁采用斜拉体系加固方案,即在原桩基两侧增设桥塔,主梁下部横向增设托梁,托梁与主梁之间通过托架在箱梁底部连接,从桥塔至托梁锚固斜拉索。在主梁加固施工中,新增钻孔灌注桩基础采用回旋钻机钻孔,采用"U形管"法压浆;新增钢构件(托梁、托架和箱内钢支撑)施工主要包括吊装、钻孔、植筋及箱内钢支撑施工;斜拉索按照从中塔到边塔、从短索到长索的顺序分级对称张拉。加固后的荷载试验表明,斜拉体系加固施工改善了桥梁的受力,抬升了跨中截面高度,加固效果明显。  相似文献   

18.
宣城市宛溪河矮塔斜拉桥设计   总被引:1,自引:1,他引:0  
汪学著  孙凤佳 《世界桥梁》2012,(1):11-13,27
宣城宛溪河大桥为单塔单索面矮塔斜拉桥,主梁采用单箱三室大悬臂三向预应力混凝土箱梁,箱梁宽25.5m;桥塔采用实心矩形截面,高23.5m;斜拉索采用高强度低松弛钢绞线拉索体系,每根拉索由27根s15.2mm环氧喷漆钢绞线组成。下部结构采用柱式墩、重力式桥台、群桩基础。介绍该桥设计特点并进行各阶段内力计算分析,计算主要内容以成桥状态及运营状态为主,考虑恒载、徐变、温度、活载、强迫位移等的影响。计算结果均满足规范要求。  相似文献   

19.
金马大桥主塔直束预应力筋设计技术与研究分析   总被引:1,自引:1,他引:1  
斜拉桥塔柱是主要的受力构件之一,因为塔柱拉索区有斜拉索巨大的拉力存在,所以要用预应力筋加强锚固区。广东金马大桥的主塔设计中采用有别于传统环型预应力束的加强锚固区的锚固方式,即采用精轧螺纹钢筋直束加强塔柱拉索锚固区的技术,这在国内特大跨径斜拉桥中是首次。本文分别就传统的U型环束加强方式和金马大桥采用的直束加强方式对该桥桥塔进行详尽的有限元模拟计算,从塔柱内力和预应力钢束的损失两个方面进行计算分析和比较。此外为了优化预应力筋的布束方式,进行了阶段塔柱光弹试验,对这种直束加强技术进行了验证,为同类型的大跨度斜拉桥的主塔设计提供一定的参考和借鉴。  相似文献   

20.
波兰瑞兹恩斯基大桥跨越奥德拉河,全长1 742m。该桥由3部分组成:南侧引桥长610m,为11跨预应力混凝土连续箱梁结构;独塔斜拉桥主桥长612m,主梁分左、右2幅布置,由160根斜拉索支承,斜拉索四索面布置,锚固在主梁的侧面端梁上;北侧引桥长520m,为9跨预应力混凝土连续箱梁结构。钻石形桥塔高122m,基础采用160根直径1.5m的钻孔灌注桩,桩长18m。南侧引桥主梁采用移动模架逐跨现浇施工,北侧引桥主梁与主桥主梁均采用顶推法施工。静、动载试验结果表明,桥梁的各项指标满足设计及相关规范要求。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号