首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
商合杭铁路芜湖长江公铁大桥主桥为主跨588m的非对称矮塔斜拉桥。为适应该桥塔矮、索平以及主梁水平轴力大的特点,主梁采用双层桥面箱桁组合结构钢梁,下层为整体钢箱以承担大部分主梁恒载及铁路活载,上层为板桁组合结构以承担剩余恒载及公路活载。主桁采用三角形桁式,桁高15m。斜拉索锚固于下弦杆件,单个钢锚箱内锚固2根最大索力为16 000kN的斜拉索。公路桥面系采用正交异性钢桥面板,铁路桥面系采用封闭式整体钢箱桥面。针对运营状态下在辅助墩处出现支座负反力的情况,采取部分铁路桥面结合梁及箱内压重的措施。钢梁架设采用箱桁同步成桥的方案。  相似文献   

2.
铜陵公铁两用长江大桥主桥为(90+240+630+240+90)m的五跨连续钢桁梁斜拉桥,该桥上层桥面布置6车道高速公路,下层桥面布置4线铁路,主梁纵向采用飘浮体系,主梁和桥塔下横梁间设置阻尼装置。主梁采用3片主桁,N形桁架,主桁采用全焊桁片式设计,公路和铁路桥面均采用密布横梁的正交异性整体钢桥面,下层桥面在受力较大的桥塔根部及压重区段采用箱形结构,每个竖杆处均设有三角形桁架式横联;桥塔为倒Y形C50混凝土结构,承台以上桥塔高212m;斜拉索采用三索面布置,桥塔两侧各布置3×19根钢绞线斜拉索。除深水区3号桥塔墩采用沉井基础外,其余主墩均采用桩基础,沉井基础为圆端形,上部18m采用混凝土结构,下部50m采用钢结构。  相似文献   

3.
G3铜陵长江公铁大桥主桥为主跨988 m的斜拉-悬索协作体系桥,公铁上、下分层布置,上层通行6车道高速公路,下层通行4线铁路。主缆平面布置,垂跨比为1/6.5,横向中心距34.7 m,纯悬吊段长331 m,标准抗拉强度2 000 MPa;斜拉索与吊索交叉索共6对,交叉区斜拉索和吊索交错锚固于主梁上。主梁采用钢桁梁,桁高13.5 m,桁宽35 m。桥塔为门形钢筋混凝土结构,合肥侧、铜陵侧塔高分别为228.5、222.5 m。斜拉索采用■7 mm高强平行钢丝索,呈扇形布置,标准抗拉强度2 000 MPa;吊索采用■7 mm高强平行钢丝索,平面布置,标准抗拉强度1 770 MPa。2个桥塔墩均采用钻孔桩基础。合肥侧锚碇采用复合式地下连续墙基础,铜陵侧锚碇采用复合板桩嵌岩扩大基础。理论分析和试验研究表明大桥具有良好的静、动力性能,能够满足高速铁路行车要求。  相似文献   

4.
丹江口水库特大桥采用跨径布置为45.8 m+(106.2+760+106.2) m+45.8 m的双塔部分地锚式混合梁斜拉桥,梁塔分离、梁台固结。主梁采用混合梁,宽31.6 m,主跨创新地采用分离式双钢箱+正交异性钢-UHPC组合桥面结构轻型组合梁,并在跨中采用具有阻尼锁定功能的无轴力连接装置;边跨采用预应力普通混凝土边主梁;钢-混结合面设置在主梁主跨距桥塔20 m处。桥塔采用下塔柱内收的H形塔,桥塔基础采用整体式承台+大直径群桩基础。桥台创新地采用重力-碳纤维增强复合材料岩锚组合式地锚桥台。斜拉索采用标准抗拉强度为1 860 MPa的?7 mm平行钢丝索,桥塔每侧设24对斜拉索,边跨斜拉索12对锚固于梁上、12对锚固于地锚桥台上,在桥塔处设竖直0号斜拉索作为竖向支承。  相似文献   

5.
日本梦翔大桥由2跨PC连续箱梁桥和3跨PC连续矮塔斜拉桥组成,跨越熊野河的陡峭峡谷.矮塔斜拉桥采用高强度、自密实混凝土,使上部结构更加细长,地震响应程度有所减小.矮塔斜拉桥桥墩采用柱式墩身,沉箱式桩基础;桥塔为Y形倾斜结构,桥塔中预埋钢锚箱,塔端斜拉索锚固在其中;箱梁中设置12×φ15.2体内预应力钢束和19×φ15.2的体外预应力钢束,梁端斜拉索锚固在混凝土桥面翼板的加劲肋上;斜拉索采用27×φ15.2的多股钢绞线束.大桥主梁采用挂篮对称悬臂浇筑,桥塔混凝土浇筑与斜拉索的安装和张拉同步进行,斜拉索采用主梁两端翼板下方4个千斤顶依次同时安装和张拉.  相似文献   

6.
墨水河大桥主桥为2×90m单塔中央双索面斜拉桥.该桥采用塔梁墩固接体系.主梁采用分体式箱形截面钢主梁,桥面采用STC层铺装体系.桥塔采用矩形截面"人"字形钢结构塔,桥面以上塔高48.6 m.主墩为混凝土圆台式墩,承台为矩形截面,下设12根φ2.0 m钻孔灌注桩.全桥共设置36根斜拉索,按中央双索面扇形布置,梁上索距9m;塔上索距2.2 ~ 2.628 m,斜拉索采用φ7mm环氧喷涂钢丝拉索.采用MIDAS Civil有限元程序进行结构静力验算,结果表明该桥结构强度、刚度、稳定性均满足规范要求.  相似文献   

7.
墨水河大桥主桥为2×90m单塔中央双索面斜拉桥.该桥采用塔梁墩固接体系.主梁采用分体式箱形截面钢主梁,桥面采用STC层铺装体系.桥塔采用矩形截面"人"字形钢结构塔,桥面以上塔高48.6 m.主墩为混凝土圆台式墩,承台为矩形截面,下设12根φ2.0 m钻孔灌注桩.全桥共设置36根斜拉索,按中央双索面扇形布置,梁上索距9m;塔上索距2.2 ~ 2.628 m,斜拉索采用φ7mm环氧喷涂钢丝拉索.采用MIDAS Civil有限元程序进行结构静力验算,结果表明该桥结构强度、刚度、稳定性均满足规范要求.  相似文献   

8.
贵州都格北盘江大桥主桥采用(80+2×88+720+2×88+80)m双塔双索面钢桁梁斜拉桥。主梁采用由钢桁架和正交异性钢桥面板结合的钢桁梁结构体系。通过在混凝土检修道、主桁弦杆内灌混凝土的压重形式平衡主、边跨恒载及活载的重量。全桥共设112对224根斜拉索,斜拉索上端锚固于上塔柱内的钢锚梁上,下端锚固于主桁架上弦杆的钢锚箱上。桥塔采用H形钢筋混凝土结构,桥塔基础采用28根直径2.8m的群桩基础。针对该桥特殊的地理位置和建设条件,对山区风荷载、钢桥面板结构体系、主梁架设方案及运营期斜拉索凝冻监测技术等进行研究,解决了大桥建设的技术问题。该桥已于2016年通车,目前运营状况良好。  相似文献   

9.
马鞍山长江公铁大桥主航道桥为主跨超千米的三塔斜拉桥。针对该桥建设标准高、荷载重、跨度大的特点,开展跨度布置、桥型方案、约束体系及主要构件研究。经综合分析比选,该桥最终采用(112+392+2×1 120+392+112) m三塔钢桁梁斜拉桥,采用中塔设置弹性索、边塔设置阻尼器的约束体系。主梁采用上层板桁结合、下层箱桁结合的双层桥面钢桁梁,横向布置3片主桁,主桁采用N形桁式。桥塔采用钢-混组合结构,中塔为纵、横向均为A形的空间四肢构造,边塔为横向A形、纵向I形构造,中塔比边塔高25 m,桥塔基础采用■4 m钻孔灌注桩。辅助墩、边墩采用横向门式墩,■2.5 m钻孔灌注桩基础。斜拉索采用标准抗拉强度2 100 MPa、■7 mm的镀锌铝合金高强度、低松弛平行钢丝拉索。  相似文献   

10.
商合杭铁路芜湖长江公铁大桥为(99.3+238+588+224+85.3)m的5跨连续钢桁梁高低矮塔斜拉桥,南、北桥塔承台以上塔高分别为130.5m、155m。大桥上层为双向8车道城市主干路,下层为4线铁路。钢桁梁横向设计为双索面双主桁结构,主桥、引桥公路桥面顶至铁路桥面处高差分别为11.136m、14.976m,主桁高15.0m。从美观角度考虑,主梁选择纯华伦型桁架,节间长度为14.0m。主桁断面采用整体钢箱与桁架组合的新型箱-桁组合结构,针对索锚点在上弦和下弦2种不同设计方案进行比选,结果显示,斜拉索锚固在下弦传力途径更为简洁,改善了主梁刚度,施工中焊接及拼装工作量少,吊装次数少,节省了架设时间。  相似文献   

11.
新建安庆至九江铁路长江大桥主航道桥采用(2×50+224+672+174+3×50)m双塔钢箱混合梁交叉索斜拉桥,半飘浮体系。该桥主梁主跨及辅助跨采用钢箱梁,总长1 056m;边跨及次边跨采用预应力混凝土箱梁,总长264m;钢-混结合段均设在辅助跨内。桥塔采用H形混凝土结构,塔高252m,上塔柱设内嵌式钢锚箱。全桥共设152对斜拉索,斜拉索采用7mm的镀锌铝合金平行钢丝,按平行双索面扇形布置,主跨跨中72m范围内斜拉索交叉设置。桥塔基础采用45根3.0m的钻孔灌注桩;边墩及辅助墩采用n形空心截面框架墩,3.0m和2.5m钻孔灌注桩基础。预应力混凝土箱梁采用支架逐孔现浇施工;钢箱梁九江侧174m辅助跨采用顶推施工,其余部分采用节段吊装施工。结构静、动力分析结果表明该桥受力、变形及运营安全、舒适性均满足规范要求。  相似文献   

12.
柳州白沙大桥主桥为主跨2×200m的单塔双索面斜拉桥,刚构体系。主梁采用正交异性钢桥面板流线型扁平钢箱梁,梁高4m、宽38m。桥塔采用钢结构空间Q形塔,塔高108m,为反对称结构。桥塔塔底通过剪力钉和PBL剪力键与混凝土塔座及承台锚固。全桥共布置60根斜拉索,按空间双索面布置,梁上索距12m、塔上索距3m。斜拉索锚固,塔端采用钢锚箱方式,梁端采用锚拉板方式。边墩采用花瓶形框架式桥墩,桥塔墩与边墩均采用分离式矩形承台、钻孔灌注桩基础。为控制成桥线形,并保证施工期间的通航,该桥主梁采用顶推法架设。采用空间有限元程序MIDAS Civil对该桥进行结构静力计算,计算结果显现出成桥阶段主梁横弯、运营阶段主梁刚度偏小的反对称结构受力特性。  相似文献   

13.
沪蓉高速公路铁罗坪大桥设计   总被引:1,自引:0,他引:1  
铁罗坪大桥主桥为预应力混凝土双塔双索面斜拉桥,跨径布置为(140+322+140)m。该桥主梁基本断面形式为边主梁;桥塔为H形,总高190.397m,塔柱采用空心五边形断面,在上塔柱锚固区采用U形预应力束加强,桥塔墩基础由24根2.4m的桩基组成;每个桥塔两侧布置19对斜拉索,斜拉索采用低松弛镀锌高强钢丝。从温度作用、汽车荷载作用、成桥阶段稳定系数方面对2种结构体系(墩塔梁固结体系和飘浮体系)进行比选,最终选择了对结构受力更为有利的墩塔梁固结体系。采用MIDAS Civil软件分别对该桥静、动力特性、抗风稳定性及地震反应进行分析,分析结果表明结构受力均满足规范要求。该桥主梁采用悬臂浇筑施工,合龙顺序为先边跨、再中跨。  相似文献   

14.
郑州郑北大桥采用桥跨布置为(221+221) m的独塔双索面结合梁斜拉桥,桥面宽度为43. 0m。该桥上跨郑州北铁路编组站,主梁采用双箱形钢主纵梁和预制混凝土桥面板共同受力的结合梁,剪力键为圆柱头焊钉。桥塔采用H形结构,塔柱为单箱单室箱形截面。桥塔设有72根斜拉索,按双索面扇形布置,斜拉索在主梁和桥塔的锚固分别采用锚拉板式构造和钢锚箱构造。斜拉索采用平行钢丝拉索,双层共挤HDPE护套,护套表面设抗风雨振功能的双螺旋线。主梁采用多点顶推施工方案,采用钢导梁和扣索塔架辅助顶推作业。文章以实际工程为例,首先对主梁设计、桥塔和基础设计、斜拉索设计及斜拉索锚固构造设计进行了分析讨论,然后对主梁施工方案进行了探究,工程施工后满足了施工要求,达到了预期效果,保证了工程的顺利施工。  相似文献   

15.
重庆东水门长江大桥主桥为双塔单索面公轨两用半飘浮体系部分斜拉桥,跨径布置为(222.5+445+190.5)m。桥塔采用天梭造型。主梁采用2片桁双层桥面钢桁梁型式,桥面采用板桁组合体系。斜拉索采用单索面稀索体系,每根斜拉索由139束平行钢绞线组成,最大索力15 000kN。索梁锚固采用在钢横梁中点位置设置大型钢锚箱的型式;索塔锚固采用外置式钢锚箱型式,钢锚箱通过剪力钉与分离式塔肢进行连接,索力由剪力钉、锚箱侧拉板和摩擦力共同承担。开发了用于超大吨位钢绞线斜拉索整体张拉的调索设备。开展板桁组合式桥面板的传力机理理论及试验、超大吨位钢绞线斜拉索的疲劳试验、索塔锚固区足尺模型试验等相关研究,验证了结构的安全性和合理性。  相似文献   

16.
安徽五河定淮淮河特大桥主桥为独塔双索面混合梁斜拉桥,跨径布置为246m+125m,该桥采用钢绞线斜拉索,斜拉索采用同向回转拉索锚固体系,即斜拉索穿过桥面一侧锚具,绕过桥塔后锚回到桥面另一侧锚具,形成同一对编号斜拉索。同向回转拉索锚固体系由钢绞线拉索系统、夹持型大转角鞍座锚索系统及主梁锚拉板锚索系统3部分组成。斜拉索采用三角提升原理安装,利用穿索机推送及卷扬机牵引将主梁一侧的钢绞线送入HDPE外套管中,穿过鞍座后,通过穿索机推送及另外一台卷扬机牵引钢绞线回到主梁另一侧锚固区,钢绞线穿索就位后,采用单股对称张拉法进行斜拉索张拉,张拉到位后进行封锚处理。  相似文献   

17.
新沙哈·阿曼纳特大桥主桥为(115+3×200+115)m连续预应力箱梁矮塔斜拉桥.主梁采用带箱内斜撑的单箱单室薄壁箱梁;斜拉索采用单索面布置,在桥塔处从上塔柱转向鞍管穿过桥塔,两端锚固在主梁顶板与斜撑交汇处;桥塔由底座、下塔柱和上塔柱构成.上部结构箱梁0号块及1号块均在支架上现浇施工,墩顶临时固结形成T构,其它节段采用三角挂篮对称悬臂浇筑施工,合龙段采用合龙吊架施工,箱梁边跨现浇段采用支架现浇施工;桥塔采用定型钢模分次浇注施工;为便于箱梁现浇挂篮的安装,斜拉索施工滞后箱梁施工1个节段.该桥的结构特点最大限度地发挥了矮塔斜拉桥的工程经济性.  相似文献   

18.
国道110线乌海黄河大桥主桥采用(120+220+120)m中央索面部分斜拉桥,结构体系为塔梁固结,塔梁与桥墩分离并设置双曲面球型减隔震支座。主梁采用变高度钢筋混凝土连续箱梁,梁高4.0~8.5m,桥面标准宽度33.5m,设1.5%双向横坡;桥塔采用钢筋混凝土实体哑铃形断面,桥面以上有效塔高40m;桥塔每侧设12对斜拉索,斜拉索采用环氧喷涂钢绞线;主墩墩身采用带挑臂板式桥墩,基础采用26根2.0m钻孔灌注摩擦桩;边墩整体造型与主墩基本一致,基础采用12根2.0m钻孔灌注摩擦桩。该桥以"笔"的形象为造型元素,独特优美,体现了乌海市"书法之城"的文化底蕴。  相似文献   

19.
针对工程实践中出现的斜拉索应力松弛现象,结合主跨240m的双塔双索面斜拉桥——南京青奥景观桥工程实例,分析斜拉索应力松弛行为对结构的影响。采用MIDAS软件建立南京青奥景观桥整体模型,分别用影响矩阵法和等效温度法模拟分析斜拉索应力松弛行为,并比较二者的差异;最后采用等效温度法计算南京青奥桥斜拉索松弛对结构的影响。结果表明:斜拉索的松弛行为可采用影响矩阵法和等效温度法进行模拟,2种方法均有足够的模拟精度,等效温度法更为直接方便;斜拉索松弛对桥塔内力和位移以及主梁轴力影响较小,对主梁局部区域弯矩和位移影响相对较大。  相似文献   

20.
郧县汉江大桥为(86+414+86)m地锚式预应力混凝土斜拉桥,每塔两侧各布置2×25根斜拉索。检测发现:斜拉索索力和设计理论状态误差较大,PE护套损伤,钢丝锈蚀严重,斜拉索系统属于四类部件。为确保桥梁结构的长期安全,结合该桥斜拉索体系病害情况,运用等强度换算原理,设计新斜拉索[采用镀锌平行钢丝、PES(HD)低应力全防腐索体、全防水结构等多项技术],替换全桥旧斜拉索。斜拉索更换顺序为病害斜拉索优先,单塔对称、双塔反对称,由长索到短索的原则进行更换。有限元结果表明,在整个换索过程中,斜拉索、主梁和桥塔结构变形、应力和强度验算均能满足规范要求。换索施工工序为旧索放张→旧索拆除→新索安装与张拉→索力调整。通过优化施工工艺,长索单塔换完后,2个点4根索同时更换,将换索工期降低到120d,极大地缩短了施工工期。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号