首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
鲜荣 《公路交通科技》2010,(11):396-401
涡激力半经验模型基于试验结果,描述涡激振动响应特征,属于现象学范畴。目前工程应用较多的主要有经验线性模型、Scanlan非线性模型和Larsen广义模型。常规尺度(1∶60左右)节段模型较小,受雷诺数效应及模型细节处理不够精确等因素影响,试验结果与实际结构往往会存在一定差异。大尺度主梁节段模型(通常为1∶15~1∶20)试验雷诺数更接近实桥,更精确地模拟主梁细节,可测得更精细准确的涡振振幅和涡振区。通过一大跨度悬索桥扁平箱梁1∶20大尺度节段模型涡振试验,基于经验线性模型、Scanlan非线性模型和Larsen广义模型识别涡激力。分析三种半经验模型在描述涡激力和涡振响应方面的特点,为类似工程应用提供参考依据。最后根据沿跨向涡激振动研究进展,提出了三维涡激振动研究问题。  相似文献   

2.
中央开槽箱形断面斜拉桥的涡激振动试验与分析   总被引:1,自引:0,他引:1  
为研究斜拉桥采用中央开槽箱形断面时抑制主梁涡激振动的气动措施,以港珠澳大桥江海直达船航道桥为背景,对其主梁节段模型进行涡激振动试验,并结合CFD方法分析对主梁采取3种不同气动措施(增设不同开孔率的底板、改变腹板角度和增设导流板)的有效性。分析结果表明:增设开孔底板可以有效地控制主梁涡激振动的发生,但存在一个最佳底板开孔率;改变腹板角度可以改善主梁涡激振动的性质,但是作为单独的涡激振动控制措施并不很理想;在主梁腹板两侧设置导流板是抑制主梁涡激振动的最有效措施。  相似文献   

3.
为准确预测桥梁涡激振动特征,基于结构-尾流振子耦合模型涡激振动预测方法,分析其动力方程及近似解,针对目前结构-尾流振子耦合模型中较难确定的模型参数(质量参数M、流场“stall”效应参数γ、结构对尾流作用的耦合项参数A和范德珀尔参数ε),提出了基于涡激振动风速~振幅曲线的模型参数识别方法。开展某主梁节段模型风洞试验,依据其实测涡振曲线,采用该方法识别模型参数,并预测不同阻尼比的桥梁涡激振动特征。结果表明:近似解精度与ε相关,ε越小,精度越高;ε越小,提出的模型参数识别方法越能准确识别模型参数;基于风洞试验实测涡激振动风速~振幅曲线识别的结构-尾流振子耦合模型可有效地预测桥梁涡激振动特征。  相似文献   

4.
利用半经验数学模型来近似表示涡激力是目前研究涡激共振所采用的主要方法,但关于非线性涡激力模型参数的试验识别研究还较少,现有识别方法也有待改进。为了更方便可靠地识别非线性涡激力模型中的参数,根据能量等效原理推导出一种基于节段模型位移响应的气动参数识别新方法。通过节段模型风洞试验测得中央开槽箱梁断面的扭转涡激共振位移响应,应用新方法识别简化非线性涡激扭矩模型中的气动参数,并对参数识别精度做出评价。将新方法与Ehsan等所建议的位移法以及基于实测力时程的三步最小二乘拟合法进行了对比。结果表明:利用新方法识别得到的气动参数可以较好地预测系统的扭转涡激共振位移响应;基于一致的系统线性机械参数,新方法识别得到的气动参数与Ehsan等所建议位移法的识别结果基本相同,而新方法能进一步考虑对识别结果影响较为显著的机械参数非线性特性;当新方法考虑非线性机械参数时,其识别结果和基于实测力时程的三步最小二乘拟合法相比也十分吻合,并且新方法更为简便。  相似文献   

5.
胡佳  赵文力  潘霞  翟杨  王云帆 《公路》2024,(1):111-115
锦江人行天桥全长698 m,主桥部分上部结构为桅杆式斜拉桥,下部结构采用V形钢桥墩,主梁断面为左右不对称钢箱梁。为研究不对称钢箱梁断面的涡激振动特性,同时消除可能存在的涡激振动对主桥运营安全的影响,对主梁断面开展了1∶20节段模型风洞测振试验,针对主梁受气动干扰敏感和可调节气动外形的区域进行涡激振动气动措施研究。试验结果表明:不对称钢箱梁在前后两侧来流工况下,主梁均出现了涡激振动现象,但各工况下的涡振现象和风速锁定区间不同;对比了去除主梁栏杆和对栏杆间隔封闭的气动措施,采用对栏杆隔三封一能够抑制主梁的涡激振动。本研究所提出的制振措施可为类似工程研究提供参考。  相似文献   

6.
嘉绍大桥为多跨斜拉桥,其分体式钢箱梁可能在常遇风速下发生涡激振动.为消除可能的涡激振动对桥梁运营安全的影响,详细开展了嘉绍大桥主梁涡激振动特性及制振措施的风洞试验研究.在开展1∶60常规节段模型试验研究,把握大桥主梁涡振特性研究的基础上,针对主梁的气动敏感区域开展了涡振制振措施的研究工作,提出了抑制涡振的梁底导流板和桥面抑振板.通过1∶20大尺度节段风洞试验更详细地把握了该桥的涡振特性,并验证了导流板和抑振板的制振效果.风洞试验结果表明,当两者单独使用时,可在0.5%的阻尼比下将涡振振幅降低50%以上,以满足规范要求;当两者联合使用时,可基本消除涡激振动.该两种制振措施为同类型主梁的涡激振动控制有较好的参考作用.  相似文献   

7.
以某主跨390 m的独塔流线型钢箱梁斜拉桥为工程依托,采用风洞试验与计算流体动力学(Computational Fluid Dynamics,CFD)相结合的方法对流线型钢箱梁涡激振动机理与气动控制措施进行研究。首先,采用几何缩尺比为1∶30的主梁节段模型进行主梁涡振性能与气动控制措施优化研究;其次,采用CFD方法对主梁涡振响应进行流固耦合计算,将Newmark-β算法嵌入ANSYS Fluent用户自定义函数(User Defined Functions,UDFs)实现主梁结构振动响应求解,同时结合动网格技术实现主梁断面流固耦合分析;并根据判断条件来检索箱梁壁面上的网格单元,以获得主梁断面振动过程中的表面压力,然后结合主梁结构振动响应、表面压力以及流场特征等对主梁涡激振动机理进行分析。结果表明:该桥主梁原设计方案存在涡激共振现象,将梁底检修车轨道内移120 cm可有效抑制主梁涡振响应;主梁涡激振动响应的数值模拟结果与风洞试验结果吻合较好;检修车轨道内移120 cm后主要改变了箱梁下表面平均压力系数分布特性,且箱梁表面各测点脉动压力卓越频率不一致,有效减小了主梁涡激振动响应;流线型箱梁靠近迎风侧的“被动区域”对结构涡振响应贡献较小,背风侧“驱动区域”发生周期性旋涡脱落是影响流线型箱梁涡振的主要因素。  相似文献   

8.
叠合梁断面通常为气动外形较钝的半开放截面,为漩涡的产生和发展提供了条件,容易发生涡激振动现象。过大振幅的涡激振动会影响行车舒适性,严重时将引起结构疲劳破坏,危及桥梁结构安全。如何有效解决涡激振动问题成为叠合梁桥抗风设计的关键。为了抑制该类主梁断面的涡激振动,以宜宾盐坪坝长江大桥为背景,通过1:60的节段模型风洞试验,研究了风嘴、中央稳定板、封闭栏杆、裙板、内侧隔流板、箱梁下导流板等常见措施对双箱叠合梁断面涡激振动性能的影响。研究结果表明:封闭斜拉索防护栏杆、内侧隔流板、梁底稳定板等措施均可不同程度地降低主梁的涡振振幅,但仍无法满足桥梁的抗风设计要求;竖直裙板可以使-3°和0°攻角下主梁的涡激振动消失,但对3°攻角的减振效果有限;在叠合梁中应用广泛的传统整体式风嘴无法降低宽幅双箱叠合梁的涡振振幅;采用安装在箱梁侧下方的三角形风嘴可以减弱箱梁边缘的流动分离,优化梁体的气动外形,从而使断面在各个风攻角下的涡振振幅大幅降低。将三角形风嘴与封闭斜拉索防护栏杆的方案组合后,可进一步降低主梁的涡振振幅,满足抗风设计的要求。所提出的叠合梁涡振抑振措施具有较好的工程适用性,可为同类桥梁的抗风设计提供借鉴。  相似文献   

9.
不同尺度扁平箱梁节段模型涡激振动风洞试验   总被引:4,自引:2,他引:2  
大跨度桥梁涡激振动振幅的判定,采用大尺度主梁节段模型风洞试验可得到更精细的结果。为分析模型尺度对试验结果的影响,通过对南京长江四桥主梁1∶50和1∶20两种几何尺度扁平箱梁节段模型的涡振试验,对比两者在涡振振幅、涡振风速、涡振区、St等方面的差异,并结合雷诺数效应、阻尼比、模型细部模拟等影响因素进行分析。得知模型几何尺度越大,Re和St越大,CD越小,涡振振幅越小;常规尺度模型细部模拟的误差可能会显著影响涡振振幅;Sc增大时,锁定状态下结构振幅减小,涡振区也随之变窄,但Sc增大并不改变St数。  相似文献   

10.
代希华  鲜荣 《公路》2012,(6):14-21
现代大跨桥梁跨度更大、结构更轻柔、自振频率较低且密集,在较低风速下主梁易发生涡激振动现象。涡激振动是一种带有自激、自限特性的非线性振动,影响涡激振动响应的因素较多如雷诺数效应、紊流特性及主梁断面形式等。介绍了近期大跨度桥梁主梁涡激振动影响因素的研究进展,为抗风设计及抑振措施提供参考。  相似文献   

11.
李春光  张佳  韩艳  晏聪 《中国公路学报》2019,32(10):150-157
为研究检修道栏杆基石对桥梁涡激振动性能的影响,依托中国某主跨808 m的超大跨度闭口箱梁加劲梁悬索桥,通过主梁大比例节段模型弹性悬挂测振测压风洞试验获取模型风致振动响应和表面各测点压力时程数据,测试原设计断面在±5°攻角范围内的涡振性能,对比分析3种不同栏杆基石位置和高度工况下主梁涡振响应性能和桥面测点脉动压力系数均值、均方差、压力功率谱以及局部气动力和总体气动力的相关性。研究结果表明:依托工程主梁设计断面发生了显著的竖向和扭转涡激共振,且扭转涡振显著超出规范允许值,主梁涡振性能随来流风攻角的增大而变差。主梁表面实测脉动压力数据分析显示,由于栏杆和基石的阻挡,箱梁上表面气流分离后在后部再附,导致上表面前部和中后部发生了强烈的压力脉动。上表面前部、后部以及下表面迎风区斜腹板局部气动力与总体气动力具有很强的相关性,这也是导致主梁发生显著扭转涡振的根本原因。将栏杆基石移至桥面板边沿显著减小了上、下表面压力脉动,上表面前部和后部气动力相关性被破坏,可以大幅抑制涡振;将栏杆基石移至桥面板边沿,并降低栏杆基石高度抑制了气流在上表面后部的再附现象,断面压力脉动被削弱,局部气动力和总体气动力相关性被完全破坏,从而有效抑制涡振。  相似文献   

12.
混凝土箱梁温度场观测与分析   总被引:3,自引:1,他引:2  
为了确定适合新疆伊犁地区特点的大跨度钢筋混凝土箱形梁桥的温度梯度模式,以新疆伊犁河大桥施工为工程背景,对大跨度钢筋混凝土箱形梁桥箱梁的温度场进行现场连续观测。采用有限元法,计算和分析基于建桥地区气候特征的钢筋混凝土箱形梁桥的温度梯度模式,并与现场实测温度数据进行比较,计算值和实测值吻合较好。最后利用数理统计的方法,拟合出桥梁施工控制时刻的升温模式和降温模式温度场,并与国内外设计规范中有关温度荷载的规定进行比较,其结果与英国BS5400规范温度梯度模式和我国公路桥涵新规范温度梯度模式较为一致,从而验证了推荐的温度梯度模式的合理性。本分析研究方法及推荐的温度梯度模式对类似桥梁工程的设计和施工具有指导意义。  相似文献   

13.
大跨悬索桥箱形钢桁架梁的综合疲劳评定方法研究   总被引:1,自引:1,他引:0  
根据大跨桥梁铜箱梁各类构件的受力特点建立了确定钢箱梁关键疲劳构件的评价模型,提出了基于结构有限元分析、应变监测信息、构件分级系统和桥梁结构人工检测等多方面信息综合评定关键疲劳构件的方法。以某大跨悬索桥钢箱梁结构为例,结合结构有限元数值计算和结构健康监测系统确定的关键钢箱梁截面,针对关键截面上的主要构件分布,利用应变传感器输出信息、结构有限元分析得到的应力分布信息、人工检测信息和桥梁主要构件的危险等级和易损等级信息,结合层次分析法和模糊综合评判理论确定了影响钢桥构件疲劳评定的各因素的权重,用综合隶属度评分法进行关键疲劳构件的等级评定。  相似文献   

14.
大跨度曲线刚构桥预应力设置对扭矩的影响   总被引:1,自引:0,他引:1  
为了减小曲线梁桥的弯-扭耦合效应,以一座大跨度曲线连续刚构桥为依托,采用有限元软件MIDAS建立空间有限元模型,计算得到自重、预应力、混凝土收缩徐变等荷载作用下的主梁扭矩分布,结果表明:曲线刚构桥主梁的扭矩主要由自重和预应力产生,且随着曲率半径的减小显著增大。因此,改变预应力筋的设置方式是抵消主梁扭矩的一种有效措施,通过不同方式改变原设计方案的对称布筋方式,得知采用预应力筋的不对称张拉以及不对称布筋方式能有效抵消恒载产生的扭矩。  相似文献   

15.
结合某大跨双塔斜拉桥工程设计实例,采用大型有限元软件ANSYS建立了三维有限元计算模型,分析了该桥的动力特性,并采用反应谱法进行了地震反应分析。研究结果表明:由于采用了半漂浮斜拉桥体系,主梁梁端位移较大,极易造成主、引桥间碰撞且对两端伸缩缝不利,可采用弹性约束或设置阻尼器等措施来限制主梁梁端位移。  相似文献   

16.
乌苏大桥主桥为独塔单索面斜拉桥,跨径布置为(140+140)m,采用塔、墩、梁固结体系,综述该桥上部结构设计与计算。主梁为带大挑臂的钢箱结合梁,中间钢箱梁采用单箱双室截面,两侧钢挑臂为变高度工字形梁,挑臂端部设槽形小纵梁;混凝土桥面板厚25 cm,与钢梁通过剪力钉连接;塔根部主梁采用预应力混凝土箱梁,以方便与桥塔固结;桥塔采用独柱式塔,高117 m;斜拉索为竖琴形中央平行索面布置,采用低松弛镀锌高强度平行钢丝束。采用有限元软件MIDAS Civil 2006及SCDS程序对该桥进行结构计算分析,结果表明该桥的静力、稳定及动力特性均满足规范要求。  相似文献   

17.
跨江大桥跨径较大,桥位风速较高,抗风问题至关重要。随着桥梁造型逐渐复杂,规范中一般公式无法适用其抗风计算,因此针对某主跨为238 m的跨江空间曲塔斜拉桥的抗风性能进行了研究。研究内容包括:利用虚拟风洞试验技术获取了主梁的静气动力系数、气动导数以及桥塔分段的模拟风荷载;利用三维颤振稳定性分析方法检验了主梁颤振性能;对主梁的涡激共振进行了数值模拟,得到了不同风攻角下的振幅-风速曲线;分析了结构静风荷载下的位移响应。结果表明,该桥主体结构的抗风性能均满足规范要求。  相似文献   

18.
大跨径钢桥面层铺装常见的破坏类型之一是铺装层表面拉应变过大引起的铺装层纵、横向开裂,这是与钢箱梁正交异性面板的加劲肋设计与布置密切相关的。本文将正交异性钢桥面板、铺装层作为整体建模,借助有限元分析软件详细研究了钢桥面板下梯形加劲肋三参数变化对铺装层表面变形的敏感性,并进一步从铺装材料模量变化和不同的荷位分布两方面分析了铺装层表面的横向拉应力分布规律,得到了一些有益的结论,以期为大跨径钢桥桥面铺装设计、桥面铺装层破坏指标的确定和钢桥面系结构刚度设计提供有益的参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号