首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
申玉生  闵鹏 《公路》2022,67(2):300-307
地震作用下饱和粉土地层易出现液化现象,造成地基失效与结构受损.因此,对地震作用下饱和粉土地层地铁盾构隧道抗液化措施的研究具有一定的意义.依托天津地铁5号线典型液化区段,采用数值模拟的方法分析了碎石桩加固前后盾构隧道的位移响应以及饱和粉土地层的抗液化性能.研究结果表明:在0.3g强震作用下饱和粉土地层2~6 m深度处超孔...  相似文献   

2.
饱和粉土地层在地震作用下可能因地基液化而发生破坏。该文采用三维有限差分程序FLAC3D(Fast Lagrang-ian Analysis of Continua)对碎石桩加固的液化粉土地基进行数值模拟,采用动力和流体的流固耦合理论分析了振动过程中土体孔隙水压力的产生、扩散与消散,得到碎石桩加固液化地基土模型的抗液化效果。经数值分析,证实了碎石桩具有显著的排水效果。该方法能较好地模拟可液化土的动力特性,为液化场地土-结构相互作用体系动力分析提供了参考。  相似文献   

3.
饱和粉土地基液化特性的振动试验研究   总被引:2,自引:0,他引:2  
对京沪高速铁路徐州段饱和粉土进行了仿真振动试验。得出了液化前后地基内不同深度、位置超静孔隙水压力的变化规律。根据地基冒水、两侧隆起、路堤沉降等现象,分析了饱和粉土地基的液化机理。  相似文献   

4.
在公路工程建设施工中,地质勘察是重要的一个环节,一般需对路线范围内的饱和砂土层进行地震液化判断,以防止因地震液化公路工程出现质量问题,影响结构安全和行车安全。在我国现行的规范中有多种液化判断的方法,在实际工程勘察设计中,由于公式不同,关于地基液化等级的估计有时会产生矛盾的结果。为此,有必要对公路行业砂土液化判断及地基液化等级划分进行分析讨论。文章结合公路工程实际数据,对公路勘察中常采用标准贯入锤击数进行液化判断的方法和静力触探原位测试来判断的方法进行论述,可为工程实践提供参考。  相似文献   

5.
饱和砂土在动力荷载作用下易发生液化而丧失承载能力,使路基填土遭受大规模的破坏。从饱和砂土的液化机理及其影响因素出发,结合山西省某高速公路采用碎石挤密桩对地震液化砂土层进行处理的实践,对加固前后土体各项物理力学指标进行了对比分析。  相似文献   

6.
邢永强 《隧道建设》2006,26(3):17-20
德商高速公路鄄城黄河大桥桥位区地震活动频繁,地基饱水的粉、细砂层发育。通过场地液化势宏观和微观判别,对桥区地基进行了液化综合评判,计算了桥区地基液化指数,划分了液化等级;指出砂土液化必须采用多种方法进行综合判别,以提高液化判别的可靠性。  相似文献   

7.
关于地震液化判别公式的探讨   总被引:1,自引:1,他引:1  
赵伟  张晓炜 《公路》2001,(9):91-91
岩土工程地质勘察中 ,场地土的地震液化评价是一项重要内容。《岩土工程勘察规范》 ( GB5 0 0 2 1— 94)中对地震液化评价有三种方法 :( 1 )标贯试验 ;( 2 )静力触探试验 ;( 3)剪切波波速。三种方法皆为据场地条件算出临界值 ,当实测值大于临界值时 ,判定为液化。在工作中发现这些临界值的计算公式中存在与实际不符的情况 ,现与大家一起来讨论。1 地震液化概念及其影响因素地基土液化的原因在于饱和砂土或粉土受振动后趋于密实 ,导致土体中孔隙水压力骤然上升 ,相应地减小了土粒间的有效应力 ,从而降低了土体的抗剪强度。在周期性的地震作…  相似文献   

8.
采用高承台群桩-独柱墩结构体,进行可液化场地群桩-土-桥梁结构地震相互作用振动台试验,再现自然地震触发地基液化及桩基破坏等宏观现象;通过试验监测了液化场地中地基的加速度、孔压反应以及桩-柱墩的加速度、位移、应变反应和上部结构的加速度反应等。结果表明:输入地震波幅值和埋深是影响砂层孔压的重要因素;地震作用中,随着场地液化的发展,自下而上砂层加速度先逐渐减弱后逐渐放大;高承台桩基地震响应与土层土性、地震动大小、场地液化程度等密切相关,地震作用下场地液化容易诱发高承台群桩体系的倒塌。  相似文献   

9.
以京沪高速铁路液化土地基加固为原型,进行了模型比例为1∶10的CFG桩桩网复合地基加固饱和粉土地基的大型振动台模型试验。通过加固与未加固地基对比,CFG桩桩网复合地基提高了地基的抗液化能力,减小了地基路堤整体沉降,能够满足高速铁路以沉降控制设计的地基沉降抗震设计要求。  相似文献   

10.
王磊  熊灵阳 《路基工程》2020,(4):189-192
砂土液化容易造成地基失稳、开裂等危害,对工程影响极大。结合南沙新区工程地质勘察项目,通过标贯试验、静力触探、剪切波速测试三种手段对饱和砂土进行液化综合判别,计算了液化指数,划分了液化等级,并根据判别结果提出了针对性的地基处理措施建议。  相似文献   

11.
邢永强 《隧道建设》2006,26(5):28-30,46
德商高速公路(河南范县段)位于豫东北黄河泛流冲积平原,该区地震活动频繁,地基饱水的粉、细砂层较发育。根据《建筑抗震设计规范》GB50011-2001的标准,通过标准贯入试验分析了路基在埋深15m内的地基具有发生砂土液化的可能性,计算了液化指数,划分了液化等级,并对路基处理提出了具体的建议。  相似文献   

12.
干振碎石桩处理高速公路液化地基效果分析   总被引:7,自引:0,他引:7  
邱钰  黄卫  刘松玉 《公路交通科技》2000,17(4):19-21,28
在全面考虑干振碎石桩挤密、减震、排水3种作用的基础上,分析了干振碎石桩对高速公路液化地基处理后,复合地基中的孔隙水压力分布情况。分析表明,考虑3种作用后,处理后的高速公路液化地基在地震作用下液化的可能性大大降低。  相似文献   

13.
盾构隧道穿越液化地基上浮振动台试验分析   总被引:1,自引:0,他引:1  
随着城市地铁线路不断增加,可能出现盾构隧道穿越液化地层的现象。一旦发生地震,盾构隧道存在上浮破坏的潜在风险。为深入研究盾构隧道周边液化地层的动力响应,针对相同密实度砂土在3种不同峰值加速度作用下开展室内振动台试验,分析土体中超静孔压的发展特性和隧道上浮规律。结果表明: 1)砂土液化最先发生在地表及浅层土体处,随着深度增加砂土液化程度逐渐降低,即增加隧道埋深有利于降低隧道液化程度。2)模型试验揭示盾构隧道的上浮机制,即使液化地基未完全液化,当超静孔隙水压力引起的上浮力大于隧道残余上覆有效土压力与隧道重力之和时,隧道将出现上浮。设计时可从消除液化地基和增加隧道重力2个方面入手,提高盾构隧道的抗上浮能力,确保隧道结构在地震时的安全。  相似文献   

14.
本文以大量粉土地基实测数据为学习训练样本及预测样本,建立了预测模型。研究表明,用RBF神经网络方法进行沙土地震液化预测是可行的。  相似文献   

15.
高速公路路基砂土液化处理   总被引:1,自引:0,他引:1  
在分析饱和砂土液化机理的基础上,结合工程实例探讨挤密砂桩、振冲碎石桩、袋装砂井3种处理方法,优选出挤密砂桩法,使该路段砂土液化地基处理既经济又可靠。  相似文献   

16.
地震作用产生的地基液化是导致建筑物破坏的一个重要原因。我国沿海地区由于河流的堆积作用存在大量的砂土和粉土地基,存在液化可能,所以地基液化的处理是很多工程中必须要面临的问题。共振法是一种新型液化地基处理方法。本文依托江苏省无锡至南通过江通道公路北接线工程,通过静力触探试验和标准贯入试验研究共振法处理液化地基的效果。试验结果得出,共振法处理后地基土的锥尖阻力和侧壁摩阻力均得到了很大提高,且随着深度的增加,提高量也在增加。共振法处理后地基土的标准贯入锤击数得到了很大提高,且地基土不再液化。  相似文献   

17.
目前,依据规范对饱和砂土液化进行判别主要是基于标准贯入试验(SPT),现行规范中基于SPT的判别方法有两种。采用这两种方法针对不同工况下的饱和砂土液化分别进行了计算,分析了饱和砂土埋深、地下水位深度及地震设防烈度对判定结果的影响规律,揭示了两种方法在判定结果上的差异性,为实际工程中饱和砂土液化判定方法的合理选择提供参考。  相似文献   

18.
利用大型堆叠式剪切变形模型箱,进行了饱和粉土地基碎石桩桩网结构加固和CFG桩桩网结构加固的振动台模型试验,结果表明,碎石桩桩网结构加固饱和粉土地基较CFG桩桩网结构加固地基更能有效提高地基的抗液化性能。  相似文献   

19.
基于非液化场地-群桩基础-上部结构大型振动台试验,建立了非液化场地-桩-结构体系地震响应数值计算模型,在分析桩-结构体系动力响应基础上,深入探讨动力荷载下非液化场地中的桩基失效模式。通过对比数值计算模型所得典型地震响应结果与试验结果,验证了数值计算模型的有效性和合理性,进一步探讨了非液化地基中土-结构体系地震响应规律,重点关注在地震作用下桩基失效过程及桩基-结构体系地震破坏模式。结果表明:在地震作用下,土体加速度在松砂层中不再放大,在最上部出现一定放大,且桩基加速度反应也有相似规律;各深度处土体动剪应力-动剪应变滞回曲线表现出对角线斜率小幅减小的趋势,说明等效剪切模量也出现不同程度的降低,也即地基各处土体抗剪强度均有一定下降;桩身最大弯矩出现在桩身中下部,在桩头与土层交界面附近桩身剪力较大,说明可能发生桩头剪切破坏或桩身弯曲破坏。  相似文献   

20.
高速公路碎石桩复合地基加固数值模拟   总被引:2,自引:0,他引:2  
通过数值模拟分析了高速公路碎石桩复合地基在桩体施工、路堤填筑、运行期全过程和地震动荷载等作用下的受力问题。计算结果表明:碎石桩在路堤的填筑和运行期中起到明显的排水固结作用,当桩长大于6m后复合地基中的孔压最大值变化较缓慢;在桩长大于10m后路堤底面的沉降量和坡脚的水平位移量变化均会较小。地震荷载作用下路堤顶部的水平向加速度峰值较底面更大;在碎石桩加固范围内,复合地基的水平刚度大于天然地基,而在整个地基内,复合地基的竖向刚度均大于天然地基,在地基刚度较大的情况下位移最大值较大;天然地基在路堤坡脚下方、路堤边坡等位置较易发生液化,经过碎石桩加固后降低了地基液化的可能性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号