首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 578 毫秒
1.
为提高电动汽车动力电池SOC的估计精度,本文中对锂离子电池模型与参数辨识算法、自适应无迹卡尔曼滤波(AUKF)算法和基于电池模型融合的SOC估计算法进行研究。建立了具有明确物理意义的电池电路模型,采用基于遗传算法(GA)的模型参数辨识算法,设计了基于AUKF的电池SOC估计方法,并基于贝叶斯信息准则,提出了电池模型融合方法,实现了基于模型融合与AUKF的电池SOC估计。仿真结果验证了该方法具有较高的精度。  相似文献   

2.
马建  张大禹  赵轩  张凯 《中国公路学报》2019,32(11):234-244
准确估计锂离子电池荷电状态(SOC)对于突破电动汽车发展瓶颈,推动电动汽车商业化至关重要。针对动力电池模型参数辨识问题,提出基于遗忘因子的递推最小二乘法(FRLS)的模型参数在线识别方法。实时测量动力电池电流和电压数据,在线辨识模型参数并实时更新,实时反映电池内部参数的变化过程,对电池动态特性进行实时模拟。针对容积卡尔曼(CKF)滤波过程中对噪声敏感的问题,提出一种基于随机加权思想的自适应容积卡尔曼滤波(ARWCKF)方法。相比于常规CKF容积点权值始终不变,通过引入随机加权因子,自适应调整容积点权值并对系统噪声、状态向量及观测向量进行预测,抑制系统噪声对状态估计的干扰,避免因容积点权重值固定所带来的误差。针对CKF算法在容积点计算过程中由于状态方差矩阵失去正定性导致的平方根分解无法使用的问题,提出基于奇异值分解的容积点计算方法,克服由于先验协方差矩阵负定性变化而导致的滤波精度下降等问题,并进行多种工况、温度下不同SOC初值的对比验证。结果表明:所提出的基于遗忘因子的递推最小二乘法的在线参数辨识及ARWCKF滤波方法具备良好的估计精度及收敛能力,最大电压估计误差不超过40 mV,SOC估计误差不超过1%。  相似文献   

3.
精确估计锂电池荷电状态(SOC)对纯电动汽车的安全稳定行驶有着深远影响,对锂电池SOC状态的估计主要有参数辨识算法和SOC估计算法两个热点问题。针对辨识过程中出现的“数据饱和”现象以及锂电池SOC状态估计时的滤波发散问题,文章提出了自适应遗忘因子递推最小二乘法(ARWLS)-自适应无迹卡尔曼滤波(AUKF)联合算法。首先建立了二阶R-C锂电池数学模型,并针对传统最小二乘法在参数辨识过程中出现的“数据饱和”现象,引入了自适应遗忘因子动态修正新旧数据权重,提升在线参数辨识的准确度以及效率。其次,针对无迹卡尔曼滤波存在的滤波失效问题,提出了自适应无迹卡尔曼滤波算法来自适应调整系统噪声和观测噪声,从而提高SOC估计时的适应性和鲁棒性。最后在混合动力脉冲能力特性(HPPC)工况下对扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和AUKF三种SOC估计算法进行仿真比较,仿真结果表明,AUKF算法估计的SOC曲线跟随SOC真实值曲线变化的性能最好,估计精度也优于其他两种算法,具有更小的估计误差,收敛性也最好。  相似文献   

4.
电池荷电状态(SOC)的准确估计是电动车辆进行整车控制优化的先决条件,也是合理实施电池管理的依据。本文中在确定1阶RC等效电路模型的基础上,采用含有遗忘因子的递推最小二乘算法和BP-EKF算法对模型参数与SOC进行在线联合估计,提出一种BP神经网络和扩展卡尔曼滤波(EKF)相结合的锂离子动力电池SOC估计方法,使用相应的滤波输出参数离线训练BP神经网络,进而将训练成功的BP神经网络用于补偿EKF算法的估计误差。通过仿真和电池动态工况试验验证,结果表明,与EKF算法相比,所提出的SOC估计方法具有良好的抑制发散和鲁棒性能,能有效提高SOC的估计精度。  相似文献   

5.
由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联合门控循环单元(GRU)神经网络和自适应扩展卡尔曼滤波(AEKF)的SOC估计,分别以AEKF和GRU神经网络的估计结果为模型值和测量值,通过卡尔曼滤波(KF)得到最终的SOC估计结果,并作为下一时刻AEKF的输入。结果表明,常温环境下考虑迟滞特性的模型对端电压预测及联合估计法对SOC估计的均方根误差(RMSE)分别在0.5 mV和0.64%以内;低温及变温环境下端电压预测及SOC估计的RMSE分别在0.9 mV和0.72%以内。考虑迟滞特性的模型及联合估计法具有良好的精度和鲁棒性。  相似文献   

6.
为了获得实时、准确的路面附着系数,进一步提高观测路面附着系数算法的精度和收敛速度,结合非线性车辆动力学模型和轮胎力修正模型,搭建分布式驱动电动汽车联合仿真平台,提出一种基于自适应衰减无迹卡尔曼滤波的路面附着系数观测算法。该算法设计与各轮对应的路面附着系数观测器,应用协方差匹配判据对观测器发散趋势进行判别,设计自适应加权系数修正预测协方差,以增强新近观测数据的利用率;同时采用次优Sage-Husa噪声估计器对未知的系统过程噪声进行估计,抑制观测器的记忆存储长度,调整过程噪声和测量噪声的均值与协方差,提高观测器的跟踪能力。利用分布式驱动电动汽车分别进行高、低附着路面和对开路面直线制动试验,并将自适应衰减无迹卡尔曼滤波路面附着系数观测器的观测结果与无迹卡尔曼滤波观测值、参考路面附着系数进行比较和分析。结果表明:高附着路面条件下,所设计的算法估计误差可控制在0.64%以内;低附着路面条件下,所设计的算法估计误差可控制在1.03%以内;对开路面条件下估计误差可控制在1.26%以内;自适应衰减无迹卡尔曼滤波算法相比无迹卡尔曼滤波算法响应速率更快,具有更高的估计精度和较强的自适应能力,估计结果整体上维持稳定,能够适应各种不同路面的估计。  相似文献   

7.
开路电压是电动汽车动力电池的重要参数之一,对电池电量(SOC)参数的估计具有关键作用。然而,在电动汽车实际使用过程中,动力电池的稳定开路电压状态却往往很难得到。传统的试验获取开路电压的方法难以满足动力电池复杂的实际工况条件。为准确获取实车动力电池的开路电压值,通过大数据分析电动汽车在充电完成状态及下次启动状态的动力电池电压状况,利用随机森林回归(RFR)算法预测动力电池电压变化特性,实现了对充电完成状态的开路电压预估,估计精度可以达到87%,为SOC标定、电池等效电路参数辨识和SOH估计工作实现奠定了基础。  相似文献   

8.
为了实现锂离子电池荷电状态(SOC)的精确估计,建立锂离子电池的二阶等效模型,提出基于加权自适应递推最小二乘法与扩展卡尔曼滤波(ARWEKF)的锂离子电池SOC估计方法。通过静态和动态工况下的仿真和试验进行验证,结果表明:ARWEKF算法的估计精度高于扩展卡尔曼滤波(EKF)算法和基于遗忘因子的递推最小二乘法(FFRLS),其模拟仿真的最大绝对误差为1.36%,均方根误差为0.42%,静态工况试验下的AE为0.67%,RMSE为0.21%,动态工况试验下的AE为1.86%,RMSE为0.56%。  相似文献   

9.
王春  唐滔  张永志 《汽车工程》2023,(4):627-636
超级电容荷电状态(SOC)的准确估计,直接决定了电动汽车的起动、爬升和加速性能,是电动汽车混合储能系统最重要的任务之一。为此,本文中提出了一种基于模糊熵加权融合的超级电容SOC估计方法。首先,利用粒子群算法辨识了-10、10、25和40℃下的戴维南模型参数,并且采用最近邻点法建立了其与温度之间的映射关系。然后,利用模糊熵设计了基于3种典型卡尔曼滤波的SOC加权融合估计方法。最后,选择自适应加权平均以及残差归一化加权融合的SOC估计方法用于进一步评估该方法的性能表征。结果表明,基于模糊熵加权融合的超级电容SOC估计方法能够提高超级电容SOC估计精度,尤其在高温环境(40℃)下提升效果更为显著。  相似文献   

10.
针对动力电池SOC估计过程中,电压观测数据容易出现野值干扰的问题,提出了改进UKF算法,将观测噪声模型修正为归一化受污染正态分布模型,利用贝叶斯定理计算野值出现的后验概率,以此作为加权系数自适应地调整滤波增益和状态协方差。该方法能有效克服野值干扰问题。但在SOC初值设定存在误差情况下,该方法会将电压观测数据中的正常值误视为野值,而仅以很小的滤波增益控制量进行调整,导致算法收敛慢甚至引起发散。因此,在算法初始阶段又引入了基于强跟踪原理的次优渐消因子对目标进行快速跟踪,弥补上述单纯抗野值方法的不足。试验验证结果表明,改进UKF算法鲁棒性强,具有很好的跟踪速度和精度,为动力电池SOC估计过程中抗野值干扰提供了一种新的方法。  相似文献   

11.
磷酸铁锂电池SOC的估算对电池组的寿命有着重要影响。在完成电池特性实验基础上提出一种能够准确估算磷酸铁锂电池SOC的方法--以Ah计量法为基础,利用开路电压法减小Ah计量法的累计误差。仿真结果表明,所提方法比传统Ah计量法具有更高的精度。  相似文献   

12.
Kalman算法在纯电动汽车SOC估算中的应用误差分析   总被引:1,自引:0,他引:1  
针对纯电动汽车电池组的工作状态和输出特性,分析了模型参数的变化对Kalman算法估算精度的影响.指出了纯电动汽车应用Kalman滤波算法估算SOC应考虑的因素,并结合电池模型参数的变化提出了Kal-man方程修正方案.最后通过电池的城市工况模拟试验,验证了分析的正确和可行性.  相似文献   

13.
电动汽车SOC估计算法与电池管理系统的研究   总被引:6,自引:0,他引:6  
在安时计量方法的基础上,采用基于折算库仑效率的卡尔曼滤波算法估计蓄电池荷电状态(SOC),并将此方法应用于HEV6580混合动力电动汽车镍氢电池管理系统。系统实现的功能包括:数据监测、数据显示、CAN通信、SOC估计、热管理和安全报警。经电池试验台模拟工况试验验证,电池管理系统各子系统达到设计要求且工作稳定。改进SOC估计方法解决了传统安时计量法不能估计初始SOC、难于准确测量库仑效率的问题,为电池管理系统稳定工作提供保证。  相似文献   

14.
SOC估算有如开路电压法、安时积分法、神经网络法、卡尔曼滤波法等多种方法[1]。江淮某轻型纯电物流车磷酸铁锂电池SOC估算采用较为成熟、稳定的安时积分策略、充电末端Vmax校准及放电末端OCV修正策略[2]。市场车辆在环境14℃~16℃时,放电末端常出现修正导致SOC5~8%幅度的跳变,文章通过对比分析,细化不同温度SOC-OCV矩阵,较好的解决上述问题。  相似文献   

15.
SOC(State of Charge,电池充电状态)估算是电动汽车电池管理系统的重要功能,准确有效的SOC估算对推动电动汽车核心技术的发展具有重要意义。文章介绍了镍氢电池工作的基本原理及电池管理系统的基本结构等方面技术,阐述了在对电动汽车SOC进行估算的8种方法,并比较各方法在应用中存在的优缺点,指出Ah计量法是目前最常用的方法,且常与其他方法组合使用。  相似文献   

16.
为了解决智能车动态组合定位过程中,因动力学模型与实际模型之间存在偏差导致滤波精度下降的问题,针对智能车全球导航卫星系统(GNSS)/惯性测量单元(IMU)组合定位系统,结合非线性预测滤波(NPF)和自适应滤波的优点,提出了一种考虑动力学模型系统误差实时估计和补偿的自适应非线性预测滤波(ANPF)算法。首先,根据NPF算法原理,通过最小化预测观测残差与系统误差的加权平方和,估计动力学模型系统误差;其次,结合自适应滤波原理,利用状态预测残差向量构造自适应因子,设计了一种自适应扩展卡尔曼滤波(AEKF)算法,用于估计系统状态向量,并通过自适应因子抑制动力学模型系统误差和线性化误差对系统状态估计精度的影响,克服NPF对系统状态估计精度有限的缺陷;再次,对动力学模型系统误差的估计误差和由动力学模型系统误差引起的系统噪声的等效协方差阵进行了分析和推导,以补偿动力学模型系统误差对系统状态估计的影响;最后,通过车载GNSS/IMU组合定位系统试验,从算法精度、鲁棒性和实时性方面对提出的算法和其他滤波算法的性能进行了验证和对比分析。研究结果表明:提出的自适应算法继承了NPF算法简易性和高实时性的优点,同时克服了NPF算法估计精度有限的缺陷,具有较好的滤波解算精度,水平定位精度小于1.0 m,算法单次平均执行时间约为0.013 9 ms,在精度和实时性的平衡方面显著优于其他滤波方法。  相似文献   

17.
探讨了电池管理系统故障诊断系统设计。从锂离子动力蓄电池管理电池系统预先危险性分析结果着手,研发了电池管理系统高压安全及诊断系统,并研究了故障诊断策略和软件开发。通过验证发现设计的诊断系统符合锂离子动力蓄电池的特性,并能够很好地满足各类电动汽车车载状况下静态和动态高压电安全诊断和控制的需要。  相似文献   

18.
汽车行驶状态参数的估计   总被引:2,自引:1,他引:1  
介绍Sage-Husa自适应卡尔曼滤波算法和滤波估计流程,建立二自由度汽车模型,在模型中加入系统噪声和测量噪声,建立系统状态方程和观测方程。利用自适应卡尔曼滤波算法,对汽车质心侧偏角和横摆角速度进行估计,并进行转向盘转角正弦输入仿真分析,仿真结果表明两者的真实值和估计值吻合良好。利用自适应卡尔曼滤波算法对汽车行驶状态参数进行估计可以降低汽车的成本,是一种行之有效且具有工程应用价值的方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号