首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
耐久试验中不同测试循环下排放规律研究   总被引:1,自引:0,他引:1  
采用标准台架循环(SBC)和标准道路循环(SRC)两种方式,分别对催化器进行耐久试验,并在不同耐久里程时分别进行排放试验。采用SBC方式时,随耐久里程增加,CO排放无明显变化,NO_x明显增大,THC有小幅增大;CO瞬态曲线由单峰态变为双峰态,双峰态峰值小于单峰态峰值;NO_x为双峰态,第1个峰值总体上呈增大趋势,第2个峰值无明显规律;THC为明显的单峰态,峰值总体上呈增大趋势。采用SRC方式时,随耐久里程增加,CO排放明显增大,NO_x也呈增大趋势,THC先增大后减小;CO瞬态曲线始终为单峰态,峰值呈增大趋势;NO_x为双峰态,第1个峰值与第2个峰值总体上均呈增大趋势;THC为明显的单峰态,峰值先增大后减小。  相似文献   

2.
依照国六标准GB18352.6-2016,对一辆装备GPF的国六轻型直喷汽油车,采用标准道路循环(SRC)在整车耐久转鼓上运行16万km耐久试验,每间隔1万km里程进行国六I型排放试验。结果表明:随耐久里程增加,PN/PM排放明显降低,其他排放污染物略有上升,CO_2变化不明显。跑行至5万km时,PN排放比0km时下降了两个数量级,并在后续的耐久跑行中趋于稳定。在WLTC排放测试循环的4个速度段中,低速段(Low)对PN排放的贡献权重最大。  相似文献   

3.
笔者从金属零部件发生疲劳破坏的本质及原理入手,得出通过对比相同汽车零部件的台架和实际道路疲劳损伤值来确定台架耐久测试标准的方法,并以道路模拟试验台为例,讨论了针对汽车白车身确定其耐久试验标准的具体过程。  相似文献   

4.
阐述了柴油机可靠性的重要意义,简述了国内外可靠性研究的现状,详细介绍了当前柴油机台架可靠性试验的项目,其中重点介绍了交变负荷耐久试验、冷热冲击循环耐久试验以及经过实践检验的优化试验方法。简单介绍了燃油系统穴蚀耐久试验、三高耐久试验、排放耐久试验等概况,提出了可靠性试验评价准则,展望了柴油机可靠性试验的发展方向。  相似文献   

5.
首先对催化剂热老化原理进行了理论研究与分析,提出针对具体车用催化器使用条件的台架快速老化循环设计思路,并在试验的基础上开发出适合中国道路条件下的台架快速老化循环。结果表明,开发的老化循环在循环的基本形状上修正一些参数,调整老化时间,能预测每个车型的实车老化。  相似文献   

6.
3 台排放控制技术路线相同但额定功率不同的非道路用挖掘机实际作业工况下的排放结果和台架工况下的排放结果之间存在较大的差异性,实际作业工况的氮氧化物(NOx)排放量为台架工况的 1.5~3.5 倍。为了研究产生排放差异性的原因,以 1 台满足非道路柴油移动机械第四阶段排放法规要求的柴油机和搭载该柴油机的挖掘机为研究对象,在台架上对该柴油机进行非道路稳态循环(NRSC)和非道路瞬态循环(NRTC)试验,实际作业工况试验则主要通过便携式排放检测系统(PEMS)设备对挖掘机进行排放试验,并利用功基窗口方法对挖掘机实际作业排放进行评估。结果表明:挖掘机实际作业工况主要分布在较高转速范围内,且扭矩变化剧烈,而台架工况的转速分布均匀,扭矩变化相对较小。因此,台架试验结果 并不能准确反映机械实际排放情况。  相似文献   

7.
基于SC7H涡轮增压柴油机试验台架,开展了非道路瞬态试验循环下的柴油机排放试验,研究了瞬态循环的工况对碳烟颗粒质量浓度的影响。收集与碳烟颗粒质量浓度相关的各类传感器数据,构建一个大型的柴油机碳烟排放数据集。构建LGB梯度树模型和循环神经网络模型,采用数据集对它们进行训练,然后采用自学习算法对两种模型进行融合,获得一个更高准确度的预测碳烟质量排放融合模型。预测与实测结果的比较表明,构建的融合模型能较为准确地预测柴油机排放的即DPF入口的碳烟质量浓度实时变化,为柴油机后处理过程中碳载量的准确计算以及控制策略的开发提供参考。  相似文献   

8.
分析了轻型车的排放转鼓循环试验和发动机台架试验之间的差异,进行了BJ1033轻型车转鼓试验和它装配的2.5 L排量4缸增压中冷柴油机台架试验,探讨了整车和发动机的CO,HC,NOx排放随时间和工况的变化关系。提出了整车排放分担率的指标,用整车分担率和发动机分担率表征各整车运行工况和发动机工况对排放的贡献。建立了整车运行工况与发动机台架试验工况之间的联系,运用灰色关联理论,分析了整车排放试验十五工况与发动机排放台架试验十三工况之间的关联度。结果表明:整车循环中,长时间的中高车速及加速工况下的排放分担率大;发动机台架试验中,中高转速、中高负荷工况点的排放分担率大;发动机怠速和高速低负荷点与整车循环排放关联度最高。  相似文献   

9.
通过对高原发动测试台架测量控制软件的升级,实现了高原发动机性能试验与排放试验的程序化控制,建立了高原发动机性能试验与排放试验的集成化数据采集系统.本文对一台国六排放水平的发动机在升级后的电涡流测控台架进行WHSC稳态循环的试验验证.结果表明:基于电涡流测功系统的发动机试验台架可以通过程序控制采集不带过渡工况的WHSC循...  相似文献   

10.
文章以汽车冷却系统为研究对象,基于频域加速理论提出了一种台架加速耐久的试验方法。该方法实现了台架试验与试车场道路试验的有效关联,能够在台架上复现冷却系统在试车场试验时的失效模式,并大大缩短了试验时间并节省了试验成本。  相似文献   

11.
结合起动机的特性曲线分析其在实际工作中的几个阶段,解读及注释起动机台架耐久试验标准,并对耐久模拟试验台架的结构原理、使用做了介绍。  相似文献   

12.
为了缩短非道路移动机械车载法排放测试的开发周期,本文提出了一种相对简单高效的方法。通过采集非道路移动机械一段时间内的实际作业工况,将其转化为满足标准要求的一组转速和扭矩值,根据这组数据在发动机台架上编制自动循环程序来模拟非道路移动机械实际作业过程中的发动机工况,同时测量该过程中排气污染物,可以计算得到发动机台架模拟的车载法排放测试结果。  相似文献   

13.
振动测试在发动机台架耐久试验中应用的目的是检测发动机零部件在试验台架的安装条件下振动加速度水平是否正常。根据台架振动测试结果去调整发动机安装,以保证发动机耐久试验过程中在运行较低的振动加速度水平下,不会引起发动机零部件在试验过程中因振动过大而造成的疲劳、磨损、断裂、失效等。本文以四缸涡轮增压汽油发动机为例介绍仪器和设备、试验工况步骤、评判标准、数据结果分析等,为发动机台架耐久试验提供振动测试数据支持及参考标准。  相似文献   

14.
变速器是汽车的重要零部件之一,对汽车的动力性、经济性以及可靠性有着重要的影响,因此变速器的耐久可靠性显得尤为重要。以某手动机械变速器为研究对象,利用道路试验数据采集系统,采集了整车可靠性试验载荷谱,将道路试验载荷谱转化为实际台架试验加载载荷谱,通过仿真分析和变速器台架耐久试验,验证了变速器载荷谱的有效性。  相似文献   

15.
某轻卡在四立柱振动台架上进行整车道路耐久模拟试验,在试验过程中出现后悬架副板簧疲劳开裂的问题,通过CAE方法对板簧总成进行非线性仿真分析,针对板簧薄弱区域进行优化改进.然后基于板簧总成等幅疲劳损伤与变幅疲劳损伤当量关系,对板簧疲劳仿真模型采用等幅循环加载,计算优化后的板簧总成与原板簧总成相对疲劳寿命比值,确保优化后的板...  相似文献   

16.
在海拔2 000~4 000 m的高原环境下,结合汽车道路试验和发动机台架试验,针对某载货汽车进行了燃用E10乙醇汽油与90号标准汽油的适应性对比研究.试验结果表明,燃用E10乙醇汽油后发动机的动力性和经济性均有改善,NOx排放略有升高,而CO和HC排放降低.  相似文献   

17.
为加速试验认证周期、降低试验成本,采用了基于多体动力学的虚拟载荷生成方法及其数据处理流程,搭建了悬架系统道路模拟试验台架,分别进行了基于虚拟载荷和基于试车场真实载荷的耐久试验。通过耐久试验零件失效模式与失效发生时间的对比分析,验证了基于虚拟载荷的悬架道路模拟试验方法的有效性。  相似文献   

18.
以某新型后悬架上控制臂橡胶衬套的疲劳耐久试验为研究对象,对室内道路载荷谱试验进行研究,提出一种加速试验方法.针对衬套的受力情况和载荷谱的特点研究加速试验方法,应用损伤理论压缩道路载荷试验谱,通过约束系统解耦,建立试验台架,进行加速试验,最后由刚度试验的结果验证疲劳损伤程度.结果表明,新的加速试验方法与传统的台架试验相比,不但具有同样的效果而且缩短试验时间,降低开发、试验成本.  相似文献   

19.
<正>整车多通道道路模拟试验是一种在试验室内复现实际道路行驶状况的测试手段。通过在试车场对实际车辆道路谱的采集,运用液压伺服多通道道路模拟台架和计算机远程参数控制系统进行迭代,得到用于驱动台架试验的道路载荷文件,在此结果上进行整车或者底盘系统的多通道道路模拟试验,最后与试车场耐久试验车辆进行比较得出零部件考核一致性结果,由此能大大缩短验证及开发时间。本文将通过实际的项目来介绍整车多通道道路模拟台架试验的过程。  相似文献   

20.
为了制定合理的传动系统台架耐久规范,对用户道路行驶负荷谱进行实际采集,结合用户调研结果获得了符合95%用户使用情况的目标负荷数据。结合档位,传动轴扭矩及其转速3个测试参数,利用数理统计获得各档位各负荷等级下的旋转圈数及转速,以此编制程序加载谱。加载循环充分考虑换档频次,使台架试验贴近用户实际的使用。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号