首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
李辉  陈翾  黄晓明  高英 《中外公路》2008,28(1):142-146
该文针对桥面结构的简化模型,利用傅里叶传热定律建立桥面铺装结构体系温度场的二维计算模型,根据当地气象条件确定边界条件及初始条件,采用ABAQUS 有限元软件求解,建立了一种桥面铺装层温度场的数值计算方法.通过计算得出桥面结构的温度分布及变化情况,并求出了桥面结构不同部位的变温速率.在正确掌握气象条件及材料的热物性参数条件下,采用该方法,可以为混凝土箱梁沥青桥面铺装结构温度应力和抗裂等进行计算分析,方便地预测其二维温度场.  相似文献   

2.
该文针对钢桥桥面铺装层早期破坏这一世界性难题,根据气象部门提供气象资料,钢桥桥面铺装材料热物性参数实测值,利用有限元手段,对深圳市某钢桥桥面铺装层温度场进行了模拟计算。结果表明:钢桥桥面铺装层具有较高的温度,高温作用时间长,温度波动大,正负梯度转化快,不同深度处,最高温度的温度滞后现象不明显等特征。相比路面温度场,钢桥...  相似文献   

3.
为了准确确定钢桥面铺装层的使用温度条件,在分析钢桥面铺装温度场影响因素的基础上,结合钢箱梁桥梁段构造特点,确定了钢桥面铺装温度场的边界条件。并以热传导定律为基础,采用Abaqus有限元软件建立了含钢箱梁的桥面铺装层温度场分析模型,采用多个特征日温度条件参数,对钢桥面铺装表面、高弹改性沥青混合料SMA10与浇注式沥青混合料GA10层间、钢桥面顶板温度场变化规律进行了分析,结果表明:钢桥面铺装层使用温度区间为-10~70℃,具有夏季使用温度高、高温作用时间长的特点,使用温度超过50℃的持续时间可达13 h以上;在不同气候环境下,钢桥面铺装层不同深度处最高温度的滞后现象不明显,同时刻的最高温差仅为4. 4℃,但SMA表面与钢箱梁内部空气最大温差可达20. 3℃,与环境最大温差可达30. 7℃。此外,建立了关于太阳辐射强度、环境温度与钢桥面铺装层使用温度的计算模型。计算模型回归分析结果表明:太阳辐射强度对不同层位温度差影响较大,且影响程度高于环境温度。最后,结合现场监测数据,对计算模型进行了验证与修正,确定系数b的取值为1. 358,并对系数a进行了修正,使计算模型趋于简化,更为准确。  相似文献   

4.
冯联武  魏军 《公路》2012,(4):141-143
为了准确预估高温情况下桥面沥青铺装层内的温度分布状况,建立了基于热传导学的桥面铺装层有限元模型.对沥青路面不同深度下温度分布情况进行预估,并对相同气温变化下路面桥面温度场差异性进行研究.研究结果表明:桥面沥青铺装层温度分布状况与大气温度、太阳辐射变化有关,铺装层内温度最大值随深度不同分别出现在下午16:00~18:00,此时桥面铺装层温度大于路面温度2℃左右,最低温度出现在上午8:00,此时桥面铺装层温度小于路面温度3℃左右.  相似文献   

5.
子模型法在大跨钢桥面铺装有限元模型优化中的应用   总被引:2,自引:1,他引:1  
为了提高大跨钢桥桥面铺装有限元分析简化模型的计算精度,在用子模型法对钢箱梁桥面铺装进行精细模拟的基础上,运用有限元正交数值模拟试验和综合评价方法对模型几何尺寸与边界约束条件进行优化。发现大跨钢桥桥面铺装有限元分析简化模型合理的几何尺寸与边界条件为:纵向为3跨,横向有8个U肋,横隔板高度为1.2 m,纵边自由,横边简支,横隔板底固结。对比分析结果表明:该简化模型具有较高的计算精度,横向拉应变误差仅为0.7%,纵向拉应变误差为3.7%,可供大跨钢桥面铺装力学分析和设计参考使用。  相似文献   

6.
桥面铺装温度场属于非线性瞬态温度场,由于其结构的复杂性,难以采用理论方法求得解析解。通过对进入铺装层的对流换热、太阳辐射及辐射换热等方面进行全面地分析后,按平面问题利用有限元方法对重庆奉云路梅子沟大桥50mT梁桥面铺装瞬态温度场进行分析。通过计算分析认为:在正确的掌握边界条件、桥面铺装和桥梁结构体材料特性参数及本地区气候条件情况下,能够可靠地计算出不同位置、不同时间桥面铺装结构的温度场分布,以便于进行温度应力的计算;确定防水粘结层的试验温度;减少获取桥面铺装温度环境的费用和时间。  相似文献   

7.
为准确计算空心板延伸桥面板桥的梁端温度胀缩变形,以某空心板延伸桥面板桥为背景进行研究。监测该桥主梁截面温度场和梁端胀缩变形,与分别采用截面平均温度、桥面板温度、规范给出的有效温度标准值计算的梁端胀缩变形值进行对比。采用MIDAS-FEA建立空心板横截面有限元模型,研究结构参数对空心板截面平均温度的影响,并对比我国不同气候区的空心板截面平均温度极值与规范值的差异。结果表明:采用截面平均温度变化值计算空心板延伸桥面板桥的梁端温度胀缩变形较为准确;历史极端高温阶段,随着主梁高度及桥面铺装厚度的增大,空心板截面平均温度最高值降低;采用规范给出的有效温度标准值,可能低估空心板延伸桥面板桥的梁端温度胀缩变形。  相似文献   

8.
宋君超  周艳 《中外公路》2019,39(1):82-86
目前用于正交异性钢桥面铺装结构受力研究的有限元方法有5种:混合单元法、子模型法、预应力简化模型法、整体模型法、局部简化模型法。研究建立相同条件的5种有限元模型,应用单梁模型对混合单元模型的正确性进行了验证,并详细分析了施加横向和纵向预应力的大小对桥面铺装各向受力的影响。将各模型计算得到的应力应变结果与整体模型法计算得到的应力应变进行比较,最终得出混合单元法所得的应力应变最接近整体模型法所得结果。  相似文献   

9.
夏季桥面沥青铺装层温度预估及其力学影响   总被引:1,自引:0,他引:1  
为了准确预估桥面柔性铺装内的温度分布状况,根据传热学基本理论和导热微分方程相关理论,建立箱型梁桥桥面铺装温度数值预估模型,使用有限差分法对其进行了求解,结果表明夏季箱型梁桥桥面铺装全天均保持高温状态。并运用预估结果分析了连续高温天气对桥面铺装力学响应的影响,分析表明高温导致的温度梯度使得导致铺装层内应力更为不利。  相似文献   

10.
大跨径钢桥铺装组合结构疲劳性能研究   总被引:1,自引:1,他引:0  
由于钢桥面的特殊结构,常用疲劳试验装置不能很好地模拟桥面铺装的疲劳破坏模式。为了正确评价桥面铺装沥青混合料的疲劳性能,通过有限元分析,建立钢桥面铺装最不利荷载模型,检验各铺装结构的抗疲劳性能。根据有限元分析模型提出了进行钢桥面铺装组合结构疲劳试验的室内疲劳试验模型。按照模型尺寸加工了试验装置,并对常用的3种桥面铺装组合结构进行了疲劳试验验证,试验结果与3种铺装组合结构在实体工程中的使用寿命基本吻合。  相似文献   

11.
为了准确预估桥面柔性铺装内的温度分布状况,根据传热学基本理论和导热微分方程相关理论,建立箱型梁桥桥面铺装温度数值预估模型,使用有限差分法对其进行了求解,结果表明夏季箱型梁桥桥面铺装全天均保持高温状态.并运用预估结果分析了连续高温天气对桥面铺装力学响应的影响,分析表明高温导致的温度梯度使得导致铺装层内应力更为不利.  相似文献   

12.
选用叠层连续梁作为计算基本模型,将沥青铺装表面的最大弯拉应变以及钢面板与沥青铺装界面最不利剪应力作为设计控制指标,以实体工程的结构参数作为计算模型参数,采用有限元计算方法,分别计算分析了大纵坡、超高横坡条件造成铺装表面产生的水平力及其对铺装结构内部应力应变的影响.根据计算结果提出修正基本模型计算结果的方法与具体修正系数的计算.在此基础上提出匝道钢桥面沥青铺装简化设计方法.最后,以实体工程为例,将该设计方法用于工程实践.实践证明,以叠层连续粱为基本模型,考虑纵、横坡度修正后进行匝道钢桥面沥青铺装设计是可行的.  相似文献   

13.
为了探明在车辆荷载作用下U型肋开口大小、桥面铺装对钢桥面板力学性能的影响,本文以带有U型肋的简支梁钢桥面为研究对象,进行局部建模有限元分析。分析中采用abaqus通用有限元软件建立了9个钢桥面局部模型,U型肋开口及间距分别选取的170mm(密肋形式),320mm(标准形式)和340mm(大开口形式)3种类型、桥面铺装为SMA沥青混凝土材料,并考虑了桥面铺装材料受季节温度的变化。从标准车辆轮载作用下模型典型部位的应力分布、竖向变形等有限元结果可知:(1)桥面铺装有无对标准U型肋及大开口U型肋构造的桥面应力分布影响较大,桥面铺装大大较少了桥面的竖向变形及应力幅值;(2)适当增加U型肋开口大小、间距及钢板厚度,有桥面铺装的情况下,桥面竖向变形满足规范要求,同时有效减小钢桥面应力幅值,提高了钢桥面疲劳性能;(3)季节温度的变化对桥面的变形和应力也有一定的影响,春秋季节时,桥面受车辆荷载作用下产生的应力和变形较小。  相似文献   

14.
为评价钢桥面铺装材料抗疲劳开裂性能,采用四点弯曲试验进行不同温度和应变条件下的高弹改性SMA10疲劳试验,建立不同温度下的疲劳行为方程;通过有限元模型提取铺装层顶面最大弯拉应力,计算SMA10在不同温度区间疲劳损伤度,建立钢桥面铺装疲劳开裂预估模型。研究结果表明,温度和应变对钢桥面铺装开裂影响显著;温度每升高10℃,高弹改性SMA10的疲劳寿命提高4~5倍;应变条件和疲劳寿命之间具有很好的指数函数关系,其相关性系数均大于0.9;通过预估模型结果表明,浇注式沥青混合料GA10+高弹改性沥青SMA10结构的疲劳开裂寿命为16年,其预估结果为钢桥面铺装方案的选择提供了理论依据。  相似文献   

15.
为解决钢桥面沥青铺装疲劳设计应变没有解析公式的问题,进行了整桥平面弯曲应变简化计算模型、钢箱梁扭转横向弯拉应变计算简化模型、局部钢桥面沥青铺装叠层梁应变简化模型等3个结构体系的分析,采用弹性支承多跨连续梁模型与弹性地基梁模型,结合拉索当量支撑刚度、主梁抗弯刚度、钢箱梁截面抗扭刚度、桥面板加劲肋当量支撑刚度等作为计算参数...  相似文献   

16.
基于钢桥面铺装的裂缝特点及断裂力学理论,引入裂缝尖端位移CTOD参数分析环氧沥青混凝土复合梁三点弯曲梁试验,研究了温度对钢桥面铺装断裂特性的影响。试验结果表明,环氧沥青混凝土铺装断裂韧度CTODc与温度成正比,同一温度下平行试验得到的CTODc离散性较小。因此,CTOD参数有可能成为钢桥面铺装失稳断裂的参数,可用于评价钢桥面铺装的抗裂性能。  相似文献   

17.
以现行《公路工程技术标准》(JTGB01-2003)为依据,结合钢桥面铺装的几何特征、力学特性,建立设置纵隔板的钢桥面双层铺装拉应力三维有限元计算模型。在结构设计参数常用取值范围内,对设置纵隔板钢桥面双层铺装的拉应力关键影响因素进行正交敏感性分析:通过逐步线性回归方法拟和出钢桥面双层铺装拉应力的近似计算公式,使得铺装层车载响应隐含式显示化:同时,通过有限元计算和回归拟舍分析,对标准单轴双轮轴载作用下拉应力的计算公式进行修正,得单轴双轮组各级轴载作用下钢桥面双层铺装拉应力的计算通式,其精度很好,能满足工程设计和理论研究的需要。研究结果可为钢桥面双层铺装结构设计提供近似计算的新方法,  相似文献   

18.
针对广东地区高速公路混凝土桥复合桥面铺装结构普遍存在的车辙、推移等剪切病害,采用ANSYS有限元软件,结合广东气候特点,建立轮胎和混凝土桥复合桥面铺装实体模型,分别进行温度和温度-荷载耦合条件下桥面铺装结构层的热效应数值模拟。结果表明:铺装层内部温度场分布不均匀,且温度应力下剪切变形薄弱层为下层AC,而耦合条件下横向剪切变形薄弱层为上层AC,纵向剪切变形薄弱层为下层AC。研究成果可为广东高速公路混凝土桥复合桥面铺装结构设计提供工程经验借鉴及参考。  相似文献   

19.
为研究热轧纵肋正交异性钢桥面板铺装层的受力特性,首先建立了钢桥面铺装体系的精细化有限元分析模型,进行多轮位工况下的仿真分析,得到铺装层主要设计指标(表面最大拉应力、层底最大剪应力及最大竖向压应变)对应的最不利荷位,并与传统纵肋钢桥面铺装模型进行比较。对热轧纵肋钢桥面铺装层主要设计指标进行构造参数局部敏感性分析,得出各指标的主要影响参数。研究结果表明:当采用相同铺装方案时,热轧纵肋钢桥面铺装层最大竖向压应变相对传统纵肋钢桥面铺装层的更小,从而表现出更好的抗车辙能力;铺装层弹性模量、铺装层厚度与顶板厚度对各设计指标影响较大,而横隔板厚度与纵肋肋底厚度的影响较小。  相似文献   

20.
桥面铺装受力条件极为复杂,其工作状态不同于一般的公路路面.然而,国内外对铺装层间力学响应的计算分析很少.因此,该文运用Ansys有限元软件,建立设置防水粘结层的桥面铺装力学模型.分析纵坡、超载、路面温度及水平力系数等不同因素对沥青混凝土铺装和粘结层层间、桥面板和粘结层层间剪应力的影响规律.在此基础上,研究不同工况桥面铺装层间工作状态,提出桥面铺装层间工况分级标准,为桥面铺装层间防水粘结材料的选择、设计提供参考依据.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号