首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
为提高动力锂电池在使用过程中剩余电量的估算精度,以满足电池管理系统对电池监控的要求,提出一种适用于不同温度的动力锂电池SOC估计方法。首先通过分析对比从控制算法模型中选择了2阶等效电路模型,并依据多温度点实验结果进行电池参数拟合,建立基于温度的电池参数模型。接着根据改进的扩展卡尔曼滤波算法,建立SOC估算模型。最后按照DST和FUDS循环进行快速控制原型仿真,验证该算法对不同温度的鲁棒性。结果表明,所制定的SOC估计算法,既能抑制电流噪声的干扰,又能在初始SOC值有较大误差的情况下,使估算值迅速收敛于真实值,在整个估算过程中误差保持在0.04以内。  相似文献   

2.
针对传统无迹卡尔曼滤波算法在估计电池荷电状态中存在收敛速度较慢、容易发散等问题,提出了一种改进的自适应无迹卡尔曼滤波算法,该算法在传统无迹卡尔曼滤波算法基础上引入了衰减因子和自适应调节因子,提高估计精度和收敛速度。以二阶RC模型为基础,运用最小二乘法对模型参数进行辨识,采用基于UT变换的自适应无迹卡尔曼滤波器算法实现对锂电池SOC的估计。搭建锂电池充放电试验平台,测试试验结果表明,该算法对锂电池SOC估计精度小于1%,在估计精度及收敛速度上均优于传统无迹卡尔曼滤波算法。  相似文献   

3.
针对电池SOC初值误差较大时,无迹卡尔曼滤波收敛较慢的问题,本文提出了改进的无迹卡尔曼滤波算法。介绍了3种常用的电池等效电路模型,通过对电池的EIS分析,确立了磷酸铁锂电池的Thevenin模型并辨识了模型参数。分析出无迹卡尔曼滤波在初值误差较大时收敛较慢的问题,在此基础上提出了改进的无迹卡尔曼滤波算法。通过实验可以看出,改进算法不仅克服了无迹卡尔曼滤波收敛速度慢的问题,而且提高了估计精度;使用改进算法对老化过程中的电池进行SOC估计,最大估计误差在4%以内,可以满足电动汽车的使用要求。  相似文献   

4.
针对动力电池SOC估计过程中,电压观测数据容易出现野值干扰的问题,提出了改进UKF算法,将观测噪声模型修正为归一化受污染正态分布模型,利用贝叶斯定理计算野值出现的后验概率,以此作为加权系数自适应地调整滤波增益和状态协方差。该方法能有效克服野值干扰问题。但在SOC初值设定存在误差情况下,该方法会将电压观测数据中的正常值误视为野值,而仅以很小的滤波增益控制量进行调整,导致算法收敛慢甚至引起发散。因此,在算法初始阶段又引入了基于强跟踪原理的次优渐消因子对目标进行快速跟踪,弥补上述单纯抗野值方法的不足。试验验证结果表明,改进UKF算法鲁棒性强,具有很好的跟踪速度和精度,为动力电池SOC估计过程中抗野值干扰提供了一种新的方法。  相似文献   

5.
精确估计锂电池荷电状态(SOC)对纯电动汽车的安全稳定行驶有着深远影响,对锂电池SOC状态的估计主要有参数辨识算法和SOC估计算法两个热点问题。针对辨识过程中出现的“数据饱和”现象以及锂电池SOC状态估计时的滤波发散问题,文章提出了自适应遗忘因子递推最小二乘法(ARWLS)-自适应无迹卡尔曼滤波(AUKF)联合算法。首先建立了二阶R-C锂电池数学模型,并针对传统最小二乘法在参数辨识过程中出现的“数据饱和”现象,引入了自适应遗忘因子动态修正新旧数据权重,提升在线参数辨识的准确度以及效率。其次,针对无迹卡尔曼滤波存在的滤波失效问题,提出了自适应无迹卡尔曼滤波算法来自适应调整系统噪声和观测噪声,从而提高SOC估计时的适应性和鲁棒性。最后在混合动力脉冲能力特性(HPPC)工况下对扩展卡尔曼滤波(EKF)、无迹卡尔曼滤波(UKF)和AUKF三种SOC估计算法进行仿真比较,仿真结果表明,AUKF算法估计的SOC曲线跟随SOC真实值曲线变化的性能最好,估计精度也优于其他两种算法,具有更小的估计误差,收敛性也最好。  相似文献   

6.
应用无迹卡尔曼滤波算法(UKF)进行锂电池的SOC估计,采用Thevenin二阶RC等效电路模型,对HPPC电池脉冲充放电实验数据进行Matlab处理,得到较为准确的模型。通过在Matlab中编写算法程序,对不同工况的估计值与实际值进行误差估算及对比分析,通过此算法进行SOC估计,得到该算法可有效降低系统误差并纠正SOC的初值偏差。  相似文献   

7.
为提高电动汽车电池SOC估计精度、收敛速度和鲁棒性,提出了一种改进的锂电池RC滞后模型及自适应粒子滤波的SOC估计方法。在传统RC模型基础上加入滞后模块,使用粒子群算法搜索的方法求解模型参数,综合考虑计算量和模型精度,确定了一阶RC滞后模型作为锂电池等效模型。在传统粒子滤波基础上,提出了观测噪声方差自适应估计方法。仿真结果表明,SOC初值误差较大时,自适应粒子滤波收敛速度和鲁棒性、SOC估计精度和稳定性明显优于传统算法。  相似文献   

8.
针对现有基于电池恒定参数模型的SOC估计方法忽略了工况和SOC对电池模型参数的影响而导致SOC估计误差偏大的问题,本文提出一种将带有遗忘因子递推最小二乘算法与扩展卡尔曼滤波算法相结合的联合SOC估计方法。该方法先利用FFRLS算法在线辨识电池等效电路模型参数并实时修正电池模型,再利用EKF算法和实时修正的电池模型估计电池SOC。实验结果表明,本文所提的SOC估计方法能有效减小电池模型参数变化所带来的SOC估计误差。在脉冲放电、脉冲充电和动态应力测试实验中,最终电池SOC估计的最大误差分别为1.01%、0.87%和1.59%。  相似文献   

9.
针对车辆行驶过程中的状态估计问题,提出了基于强跟踪容积卡尔曼滤波的车辆行驶状态估计算法。建立了采用Dugoff轮胎模型非线性3自由度车辆估算模型,通过对纵向加速度、侧向加速度、横摆角速度、转向盘转角和车轮轮速低成本传感器信号的信息融合以实现对车辆行驶状态的准确估计。应用驾驶员模拟器进行在环试验结果表明,基于强跟踪容积卡尔曼滤波的估计算法能够较准确地对车辆行驶状态进行估计。  相似文献   

10.
为应对汽车铅酸蓄电池荷电状态在线估计的需求,分析了现有SOC估计方法不足;在给出Thevenin电路模型基础上,结合铅酸电池的开路电压与SOC关系曲线,获得SOC估计线性化的输出方程,进而提出采一种基于卡尔曼滤波的铅酸电池SOC在线估计方法。通过卷绕式铅酸电池实验和计算结果表明,该算法能够实时估计电池SOC状态,最大误差小于5%,相比于传统的安时积分法更适合用于在线检测。  相似文献   

11.
电池荷电状态(SOC)的准确估计是电动车辆进行整车控制优化的先决条件,也是合理实施电池管理的依据。本文中在确定1阶RC等效电路模型的基础上,采用含有遗忘因子的递推最小二乘算法和BP-EKF算法对模型参数与SOC进行在线联合估计,提出一种BP神经网络和扩展卡尔曼滤波(EKF)相结合的锂离子动力电池SOC估计方法,使用相应的滤波输出参数离线训练BP神经网络,进而将训练成功的BP神经网络用于补偿EKF算法的估计误差。通过仿真和电池动态工况试验验证,结果表明,与EKF算法相比,所提出的SOC估计方法具有良好的抑制发散和鲁棒性能,能有效提高SOC的估计精度。  相似文献   

12.
采用自适应卡尔曼滤波方法,基于锂离子动力电池的等效电路模型,在未知干扰噪声环境下,在线估计电动汽车锂离子动力电池荷电状态(SOC)。仿真结果表明,采用自适应卡尔曼滤波方法估计的SOC误差小于2.4%,有效降低了电动汽车行驶时电池管理系统所受到的未知干扰噪声影响,SOC估计精度高于扩展卡尔曼方法,且具有较好的鲁棒性。  相似文献   

13.
为了实现锂离子电池荷电状态(SOC)的精确估计,建立锂离子电池的二阶等效模型,提出基于加权自适应递推最小二乘法与扩展卡尔曼滤波(ARWEKF)的锂离子电池SOC估计方法。通过静态和动态工况下的仿真和试验进行验证,结果表明:ARWEKF算法的估计精度高于扩展卡尔曼滤波(EKF)算法和基于遗忘因子的递推最小二乘法(FFRLS),其模拟仿真的最大绝对误差为1.36%,均方根误差为0.42%,静态工况试验下的AE为0.67%,RMSE为0.21%,动态工况试验下的AE为1.86%,RMSE为0.56%。  相似文献   

14.
锂电池荷电状态(SOC)的准确估计是电池管理系统的关键技术,为了解析传感器误差对SOC估计精度的影响,以二阶RC等效电路模型为基础,运用遗传算法进行参数辨识,采用扩展Kalman滤波算法进行SOC估计,分析电压、电流传感器存在的漂移和白噪声对SOC估计的影响。结果表明:电压、电流传感器的漂移与SOC估计误差的均值近似呈线性关系,电压、电流传感器存在的白噪声对SOC估计误差的均值无影响;对于实验中的三元锂离子电池,若使SOC估计精度在5%以内,电压的偏差值应控制在10 m V以内、电流偏差值应在1/30 C以内。  相似文献   

15.
SOC-OCV曲线是锂离子电池状态估计的基础。针对传统HPPC测试法在非测试点不能描述电池非线性特性和小电流恒流放电法得到的OCV曲线精度不足等问题,提出一种基于粒子群优化算法的OCV曲线优化方法。该方法将小电流恒流放电得到的OCV曲线进行平移,以平移曲线在测试点与HPPC测试得到的OCV值之间的误差和最小为优化目标,对OCV曲线进行优化。然后,以优化OCV曲线为基础对2阶RC模型的模型参数进行辨识和模型端电压估计。结果表明:与HPPC法相比,基于优化OCV曲线的模型精度具有更高的全局精度,在低SOC区域的模型精度提高了一倍。最后,基于优化的OCV曲线和辨识的模型参数,设计扩展卡尔曼滤波算法对SOC进行全SOC区域估计。试验结果表明,基于优化OCV曲线和扩展卡尔曼滤波算法的SOC估计误差在全SOC区域上都能保持在2%以内。  相似文献   

16.
基于PNGV改进模型的SOC估计算法   总被引:1,自引:0,他引:1  
基于磷酸铁锂动力电池改进的PNGV等效电路模型,提出了卡尔曼滤波法结合安时积分法估算电池荷电状态(SOC)的方法。该模型考虑了温度、自放电等因素对模型参数的影响,在Matlab/Simulink中建立了仿真模型,通过对比采用卡尔曼滤波法结合安时积分法和单独采用安时积分法估计得到的电池SOC值,表明PNGV改进模型能真实地反映电池特性,并能在允许的误差范围内准确估计电池的SOC。  相似文献   

17.
在电动车、储能系统和移动设备等领域中,电池管理系统是保障电池组性能和安全性的关键技术之一,而电池荷电状态(SOC)估算是其重要的组成部分。文章重点针对18650型号的磷酸铁锂电池(单体电池)SOC估算展开研究和设计,首先选择双阶远程控制(RC)模型作为电池模型,通过电池容量标定实验、开路电压(OCV)-SOC标定实验、混合功率脉冲特性(HPPC)实验确定了双阶RC模型的各个动态参数,在MATLAB/Simulink中搭建动力电池仿真模型,验证了所选模型的可靠性。然后,为了解决单体电池SOC估算精度和成本等问题,以扩展卡尔曼滤波(EKF)算法为基础提出了一种改进方法,即在预测第k个时间步的误差协方差矩阵时,引入了时变渐消因子,在更新方差Q和R时引入自适应分子。最后,通过不同循环工况对提出的算法进行仿真分析,结果显示,提出的算法提升了SOC估算的精度,实用性强。  相似文献   

18.
本文中提出了一种基于改进的Sage-Husa自适应扩展卡尔曼滤波的车辆行驶状态估计算法。首先建立了非线性3自由度车辆估算模型和Dugoff轮胎模型。接着通过对纵向加速度、侧向加速度、横摆角速度和转向盘转角等低成本传感器信号的信息融合,实现对车辆行驶状态的准确估计。最后应用CarSim和Matlab/Simulink联合仿真对算法进行验证。结果表明:基于改进的Sage-Husa自适应扩展卡尔曼滤波的估计算法能比扩展卡尔曼滤波算法更准确、稳定地估计车辆行驶状态。  相似文献   

19.
基于改进的Sage-Husa自适应扩展卡尔曼滤波的车辆状态估计   总被引:1,自引:0,他引:1  
本文中提出了一种基于改进的Sage-Husa自适应扩展卡尔曼滤波的车辆行驶状态估计算法。首先建立了非线性3自由度车辆估算模型和Dugoff轮胎模型。接着通过对纵向加速度、侧向加速度、横摆角速度和转向盘转角等低成本传感器信号的信息融合,实现对车辆行驶状态的准确估计。最后应用CarSim和Matlab/Simulink联合仿真对算法进行验证。结果表明:基于改进的Sage-Husa自适应扩展卡尔曼滤波的估计算法能比扩展卡尔曼滤波算法更准确、稳定地估计车辆行驶状态。  相似文献   

20.
由于迟滞特性的存在,电池管理系统难以准确获得开路电压(OCV)与荷电状态(SOC)之间的状态关系。为有效地运行和管理动力电池,本文研究了考虑迟滞特性的锂离子电池模型,选用带有遗忘因子的递推最小二乘法进行参数在线辨识。提出了一种联合门控循环单元(GRU)神经网络和自适应扩展卡尔曼滤波(AEKF)的SOC估计,分别以AEKF和GRU神经网络的估计结果为模型值和测量值,通过卡尔曼滤波(KF)得到最终的SOC估计结果,并作为下一时刻AEKF的输入。结果表明,常温环境下考虑迟滞特性的模型对端电压预测及联合估计法对SOC估计的均方根误差(RMSE)分别在0.5 mV和0.64%以内;低温及变温环境下端电压预测及SOC估计的RMSE分别在0.9 mV和0.72%以内。考虑迟滞特性的模型及联合估计法具有良好的精度和鲁棒性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号