首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
细粒式SMA-5级配组成设计研究   总被引:1,自引:0,他引:1  
针对目前规范中缺少细粒式SMA-5的级配设计,分别以2.36 mm和1.18 mm作为粗细集料分界筛孔,分析了SMA-5的体积指标参数特性;通过体积指标特性分析和路用性能试验,确定了SMA-5级配的粗细集料控制筛孔及通过率;结果证明马歇尔稳定度与流值不适合作为SMA配合比设计的关键控制指标,矿料间隙率VMA及VCAmix受级配变化的影响大于受沥青用量的影响,VCADRC值随着级配的增粗略微增大,试验用混合料级配对压实功的变化不敏感,采用双面击实75次的击实标准可行,推荐以2.36 mm作为SMA-5粗细集料的分界筛孔,通过率宜控制在28%~40%范围之内。  相似文献   

2.
任万艳  李俊 《公路》2022,67(1):300-304
为了明确粗集料压碎值对多孔沥青混合料性能的影响,选取玄武岩、破碎砾石和石灰岩3种不同压碎值的粗集料.首先采用击实试验模拟分析了粗集料和多孔沥青混合料受荷后的级配变化规律,其次探究了粗集料压碎值对多孔沥青混合料体积指标和路用性能的影响.研究结果表明:粗集料和沥青混合料受荷后9.5 mm筛孔集料的质量通过率变化最大,4.7...  相似文献   

3.
对于SMA混合料,准确地设计矿料级配非常必要.因为其路用性能,尤其是抗车辙能力,主要归功于混合料中粗集料所形成的石-石嵌挤结构.该文论述了一种基于贝雷法的SMA配合比设计过程,研究了16种不同的沥青混合料,包括6个矿料级配和3个沥青用量.通过对成型试件的体积参数进行分析,发现粗集料用量对VCA和VMA两个指标影响较大.当粗集料的设计密度为干捣实密度的95%~105%时,粗集料可以形成很好的石-石嵌挤结构.试验结果表明,SMA混合料具有较好的抗车辙能力;同时车辙试验的动稳定度和蠕变试验的变形应变之间存在密切的联系.  相似文献   

4.
提出了一种新的抗车辙的骨架密实性沥青混合料级配设计方法,在粗集料级配设计时,筛除4.75mm粒径以下的细集料,以干捣实密度值为粗设计指标;采用SAC方法进行细集料的设计,得到的细集料级配较为密实。在骨架级配设计时,沥青混合料的标称粒径与0.75 mm筛孔通过率数值密切相关,0.075 mm的筛孔的通过率是会变化的,能够根据标称粒径的减小而从一定的程度上有增大的情况,从以往的施工得到的经验,在标称的粒径为25 mm的时候,0.075 mm筛孔通过率在4.5%~5.5%的范围内较为合适;在标称粒径为13 mm时,0.075 mm筛孔通过率在6.5%~8.5%的范围内较为合适。在进行抗车撤骨架密实性沥青混合料配合比设计时,以标称粒径为13 mm的骨架级配设计为例,根据马歇尔试验结果,本例设计指标空隙率为4%,毛密度值为2.444 g/cm~3,油石比为4.46%。最后对沥青混合料在拌和、运输、摊铺、碾压、养护等阶段的施工技术进行了分析,提出相关注意事项。  相似文献   

5.
为了合理确定搅拌设备振动筛筛孔,基于SuperPave级配设计理论和Bailey级配理论,分析了沥青混合料中粗细集料的比例与骨架嵌挤结构之间的关系、细集料含量对混合料抗永久变形能力和压实难易程度的影响、半筛孔材料通过率对粗集料骨架结构和施工特性的影响及最大粒径筛孔对剔除超限料的作用等,得出筛孔的选择原则;以AC-16型沥青混合料为例,进行了搅拌设备筛孔选择与生产级配控制试验研究,结果表明,目标级配和生产级配偏差可控制在±1%以内。  相似文献   

6.
为了研究不同沥青种类对SMA-13级配的影响,进行了武云高速复合改性橡胶沥青AR-SMA-13和中州大道整治工程SBS-SMA-13的级配、油石比、粗集料的骨架分界筛孔、粉胶比、沥青膜厚度及混合料路用性能等的对比研究。研究过程中采用贝雷法对两种沥青混合料的级配嵌挤效果进行了分析。由于复合改性橡胶沥青和SBS改性沥青的化学成分差异较大,其运动黏度和延度均差异较大。试验得出,AR-SMA-13中2.36~4.75 mm之间的碎石含量接近12%,是传统间断级配的2倍,路用性能仍然较好;AR-SMA-13中0.075 mm筛孔的通过率仅为6%,与SBS-SMA-13中0.075 mm通过率8%~12%形成显著区别;SMA-13骨架分界筛孔选择4.75 mm还是2.36 mm,对混合料的骨架嵌挤的判断是不同的,结果表明,传统间断级配理论关于SMA-13级配中2.36~4.75 mm间断是不必要的;SMA-13骨架分界筛孔建议选择2.36 mm。虽然复合改性橡胶沥青5℃延度远小于SBS I-D,但AR-SMA-13也具有较好的抗低温变形能力,低温弯曲应变与SBS-SMA-13混合料相比,差异不大;复合改性橡胶沥青运动黏度与SBS I-D改性沥青相比差异非常大,但两种级配的混合料都具有较好的抗车辙性能,SBSSMA-13比AR-SMA-13的动稳定度仅低12%,其混合料高温性能的差异远没有沥青运动黏度之间的差异大。当沥青性能差异较大时,沥青混合料的设计指标应做出适当调整,以保证沥青混合料能够具有良好的路用性能。  相似文献   

7.
具有耐久使用性能的沥青混合料设计方法   总被引:1,自引:1,他引:0  
为了实现沥青混合料路面的长期使用性能,提高其抗裂性能、抗车辙性能和水稳定性能,通过振实试验确定了粗集料的级配,并通过理论计算对试验结果进行了验证;同时采用正交试验方法确定了沥青砂浆的最佳配合比,并应用方差分析法确定了因子对试验指标作用的显著程度;最后通过体积法确定了粗集料与沥青砂浆的合理配合比.苏州段试验路的长期观测数据表明,该设计法确定的沥青混合料具有优良的长期使用性能.  相似文献   

8.
配合比设计是沥青路面施工的关键环节,对施工成本、工艺及实体内在质量影响很大。该文在SAC多碎石沥青混凝土设计方法的基础上,引入粗集料振实密度修正系数进行调整,并结合实测级配指数对振实密度的影响及4.75~2.36mm集料的干涉效应,提出了多碎石沥青混凝土配合比设计的理论-经验法。按此方法,结合沥青混合料各材料体积特性等指标,可快速确定和设计具有优良抗车辙性能的骨架密实型沥青混合料。  相似文献   

9.
本文主要研究SMA-13沥青玛蹄脂碎石混合料的原材料选择、控制关键筛孔4.75mm通过率变化集料级配、混合料设计,在混合料设计的基础上,成型车辙板,研究SMA-13沥青混合料的抗滑性能与集料级配之间的关系。研究发现:当2.36~4.75mm档沥青混合料的用量较小时,随着这档集料用量的增加,路面的摆值及构造深度会随之增加当这档集料用量增加到一定程度,再增加该档集料用量,路面构造深度及摆值反而会降低。  相似文献   

10.
通过总结国内外应用AC-5的级配,结合规范级配提出了AC-5试验级配范围。用石灰岩和花岗岩集料设计出36种薄层AC-5沥青混合料,通过APA车辙试验对混合料性能进行分析,分析发现很多高温抗车辙性能优异的混合料体积参数并不符合我国规范AC-5沥青混合料体积参数标准,同时我国规范AC-5沥青混合料体积参数标准不完善,也缺少实体工程应用检验。鉴于此在APA车辙试验基础上分析修正AC-5沥青混合料体积参数标准。  相似文献   

11.
聚酯纤维沥青混合料级配设计的理论方法   总被引:1,自引:1,他引:0  
应用分形理论,推导出聚酯纤维沥青混合料粗、细集料级配设计的数学模型。根据颗粒填充特性,计算出粗、细集料各级筛孔的理论通过率。将粗、细集料分别看作一个整体对其级配进行设计,在保持集料总比表面积基本不变的情况下,建立在实际设计中粗集料级配调整设计的数学模型。根据数学公式,得出3种不同的设计级配。结果表明,粗集料占74%,细集料占15.2%,填料占10.8%;对于掺量为0.2%的聚酯纤维沥青混合料而言,级配1和级配2的体积参数不满足规范要求,级配3的体积参数均满足规范要求,是最优级配组成。  相似文献   

12.
通过对沥青混合料集料级配计算、设计、调整和沥青混合料高温性能评价指标的研究,提出了变i法及其公式,给出了满足AC-16、SMA-16和Sup-12.5级配的i值范围;将0.075 mm筛孔作为最小控制筛孔,提出了FAP指标,以此检验0.075 mm筛孔的通过率,完善了贝雷法对设计级配关键筛孔通过率的检验,给出了满足SMA-16型级配的CA比和FA比检验的合理指标范围,为SMA的设计和检验提供了理论依据;综合考虑行车速率、累积变形量和最大永久变形量等因素对沥青混合料高温性能影响,提出的动抗压强度(DCS)指标 能较好体现工程实际中车辙的形成规律,有效提高了对沥青混合料高温性能评价的区分率.  相似文献   

13.
为提高AC-25沥青混合料路用性能,应用正交试验设计,研究了各因素水平对马歇尔性能指标的影响,提出了优化的AC-25矿料级配工程设计范围.结果表明,2.36 mm筛孔通过率是空隙率、毛体积相对密度、矿料间隙率和稳定度的主要影响因素;混合料性能指标主要受控于细集料(<2.36 mm)的级配组成和含量的变化.通过相关力学性能和实体工程检验,证明了采用优化的AC-25混合料级配具有良好的骨架密实特性、高温抗车辙性能和力学行为特性,可应用于高温多雨地区高速公路沥青路面中,对提高混合料组成设计水平和沥青混合料质量控制具有指导借鉴作用.  相似文献   

14.
排水沥青混合料为骨架空隙结构,其粗集料的骨架结构对排水沥青混合料的稳定性和耐久性至关重要。为了研究粗集料类型对排水沥青混合料体积特性的影响,选择3种岩性的粗集料(S10、S12),1种TPS改性沥青,通过粗集料骨架间隙率VCA、马歇尔试验、车辙试验、间接拉伸试验、冻融劈裂试验,分析了3种不同粗集料对VCA、满足排水沥青混合料设计空隙率20%时各矿料级配组成的影响,结果表明,为满足排水沥青混合料的骨架结构和高温、低温、水稳定性能要求,2种粗集料S10和S12的相对用量比例应在40∶60~50∶50之间。  相似文献   

15.
在集料逐级填充试验的基础上,结合分形理论,对粗、细集料内部构成情况进行分析;通过承载比和密度试验,确定粗集料分维数Dc、细集料分维数Df的合理取值范围;以30%关键筛孔4.75 mm通过率进行级配设计,并在最佳油石比情况下进行沥青混合料路用性能试验,依据试验结果分析沥青混合料分形维数与路用性能之间的相关性。  相似文献   

16.
为了提高沥青混合料的路用性能,利用颗粒流软件PFC~(2D)构建了沥青混合料单轴贯入数值试验方法,阐述了沥青混合料单轴贯入数值试验中试验条件的模拟方法和模型参数的取值,结合实体工程中AC-20室内单轴贯入试验评价了其可靠性。选取不同的原材料得到3组模型参数,基于单轴贯入数值试验研究了模型参数取值、粗集料级配、细集料级配和粗细集料比例对沥青混合料抗剪强度的影响规律。最后,通过室内单轴贯入试验确定了关键筛孔最佳通过率范围,提出了以抗剪强度最大为原则的AC-20矿料级配,并验证了其路用性能。结果表明:单轴贯入强度模拟曲线与室内实测曲线基本吻合;单轴贯入数值试验模型参数的取值对最大抗剪强度时集料的比例不产生影响;五档粗集料19~26.5mm,16~19mm,3.2~16mm,9.5~13.2mm,4.75~9.5mm的比例为3∶12∶5∶10∶10,细集料级配取I=0.75时所对应的级配,粗细集料比为60∶40时,沥青混合料抗剪强度最大;建议AC-20沥青混合料矿料级配9.5mm,4.75mm,2.36mm及0.075mm筛孔通过率分别为50%~60%、34%~44%、31%~37%和3%~7%;与规范推荐级配中值相比,优化级配AC-20混合料的抗剪强度、动稳定度分别提高了25%、27%。  相似文献   

17.
通过对散体力学剪切模量公式的分析,提出以剪切模量为控制指标的沥青混合料级配设计方法,在设计步骤中充分考虑粗集料的剪切模量而不是以最小间隙率为控制指标,提高了沥青混合料的抗剪切性能,解决了沥青混合料出现高温稳定性不足易发生车辙病害的问题。新方法设计出的级配以粗集料形成抗剪骨架,细集料充分填充,最终形成骨架抗剪密实结构。通过室内试验比较分析,其高温稳定性和水稳定性优于比较级配,低温抗裂性满足规范要求,证明了以剪切模量为控制指标的级配设计方法,可以提高沥青混合料料的高温稳定性,减少高速公路车辙病害的发生。  相似文献   

18.
利用棱角不同的粗、细集料制备了5种沥青混合料试件,通过单轴蠕变和间接抗拉强度试验,研究了集料棱角对混合料体积特性及疲劳性能的影响。利用抗裂性能试验,并结合有限元分析方法,分析了集料棱角与沥青混合料开裂间的关系。利用车辙试验研究了集料棱角与混合料抗车辙性能之间的关系。研究成果表明:1)集料棱角值越高,需要越高的沥青用量才能达到沥青混合料设计标准,而较高的沥青用量,就增加了沥青粘弹性,进而对沥青混合料抗裂能力产生积极影响;2)集料棱角也会因应力集中而造成开裂。集料棱角间的嵌挤作用会对沥青混合料的抗车辙产生重要影响,棱角值越高,嵌挤作用越强,抗车辙性能越好。利用有限元软件对混合料微观结构的分析验证了室内试验结果。  相似文献   

19.
SMA高温稳定性研究   总被引:15,自引:4,他引:15  
为了研究沥青玛蹄脂碎石(SMA)高温稳定性的影响因素,以车辙试验结果为判据,对不同粗集料含量、粗集料级配、沥青种类、混合料密度、粉油比的SMA混合料进行了高温稳定性系统研究,对采用旋转试验机(GTM)优化设计的SMA的抗车辙性能作了全面对比,对AC和AK系列混合料也做了车辙性能对比。研究表明:粉油比、沥青性质对SMA抗车辙能力的影响比级配更显著;GTM设计的SMA较马歇尔方法具有更为优良的抗车辙性能;恰能形成骨架密实结构的SMA具有最优的高温稳定性;GTM设计的AK 16A较SMA更具优势。  相似文献   

20.
以分形理论为基础,对分形级配在密级配沥青混合料配合比设计中的适用性进行试验研究。研究结果表明:分形理论级配计算公式与传统级配计算方法具有高度相似性;分形级配与现行规范密级配设计上下限范围相关性较高;分形矿料级配需要对个别筛孔通过率进行修正;分形级配粗集料堆积密度在分维数D=2.5附近存在最大堆积密度;分维数D=2.40~2.55范围内,修正的分形矿料级配对应的AC-20沥青混合料和AC-16沥青混合料具有良好的高温稳定性、马歇尔体积指标和抗水损性能等路用性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号