首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 293 毫秒
1.
在由智能网联汽车(CAV)与网联人工驾驶汽车(CHV)组成的混合交通环境下,以提升网联信控交叉口的行车效率、降低燃油消耗量为目标,设计了网联信控交叉口场景,在完成车辆运动学、跟驰及油耗建模的基础上,提出了一种基于车辆编队的网联车辆协同诱导策略,以平均行驶延误时间和平均燃油消耗量为评价指标,基于SUMO平台完成仿真测试。测试结果表明:在稀疏、欠饱和及过饱和交通流量条件下,随CAV渗透率的提升,通行效率和燃油经济性不断提高;在CAV渗透率低于60%时,CHV驾驶员服从度对协同行车诱导策略性能的影响更为显著。  相似文献   

2.
王树凤  王世皓  王新凯 《公路》2023,(6):289-297
现有的车辆编队控制研究多基于全智能网联环境,不适用于智能网联汽车(Connected and Automated Vehicle, CAV)与人工驾驶汽车(Human-Driven Vehicles, HDV)组成的混合交通场景,因此以混合交通环境下CAV和HDV组成的车辆编队为研究对象,引入头车及前车、后方HDV信息,提出一种改进的智能驾驶员模型(Intelligent Driver Model, IDM)。为更贴合驾驶员的操作行为,缓解优化速度模型(Optimal Velocity Model, OVM)受前车影响产生的速度波动,通过引入驾驶员误差,对OVM模型进行改进。为验证模型的有效性,分别对以上改进进行仿真对比分析,结果表明改进后的IDM模型和OVM模型组成的混合车辆编队在速度响应时间、跟驰间距、油耗、安全性、稳定性等性能方面得到明显改善。  相似文献   

3.
智能网联汽车最终会以电动汽车为实现载体,而人工驾驶车辆在未来相当长的时间里依然会以传统燃油汽车为主体.以此为背景,研究城市混行交通与动力异构条件下智能网联汽车的生态驾驶问题.考虑智能网联汽车低占比时的城市交通环境,以智能网联汽车电能消耗最小为目标,将智能网联汽车生态驾驶问题表征为最优控制理论框架下的两点边界值问题,并予...  相似文献   

4.
钱立军  陈晨  陈健 《汽车工程》2023,(5):768-776+785
针对混合交通中人类驾驶汽车引起的碰撞隐患,提出一种考虑驾驶员误差的无信控交叉口集中式轨迹规划方法。首先,以最优控制框架设计了多车协同轨迹规划方法,以运动时间、燃油经济性和行车延误建立复合优化目标。其次,通过实车试验采集不同驾驶员的操作数据集,建立加速度误差的马尔科夫链误差转移概率矩阵。最后,基于车辆碰撞估计结果对可能发生事故情况进行重规划计算,并在不同自动驾驶市场渗透率工况下进行仿真验证。仿真结果表明,碰撞发生率和平均重规划次数与渗透率负相关。采用重规划方法后交叉口内的规划成功率可达90%以上,且燃油经济性等交通指标得到改善。  相似文献   

5.
车辆队列控制在提高驾驶安全性、提升交通流量、改善燃油经济性方面具有巨大潜力.现有车辆队列控制研究多针对完全由网联自动驾驶车辆组成的队列,难以应用于实际混合交通环境,而现有混合队列控制研究通常仅考虑网联自动驾驶车辆跟驰控制目标,而忽略了其对后方交通流与队列稳定性的影响.为此,研究了混合人工驾驶车辆与网联自动驾驶车辆的队列...  相似文献   

6.
为改善常规驾驶车辆交通流追尾碰撞交通安全状况,提出智能网联车辆(Connected and Automated Vehicles,CAV)与常规车辆构成的混合交通流车队稳定性优化控制方法。基于全速度差模型,应用集成速度与加速度的多前车反馈构建CAV跟驰模型,考虑CAV混合交通流车辆空间分布的随机性,将各类型局部车队稳定性作为优化目标,以局部车队头车速度扰动为系统输入,以尾车速度扰动为系统输出,应用经典控制理论领域的传递函数法推导局部车队稳定性约束条件;分析关于平衡态速度与CAV反馈系数的车队稳定域,以各类型局部车队能够在任意平衡态速度下均稳定为控制目标,对CAV反馈系数输出进行优化控制;设计高速公路上匝道交通瓶颈数值仿真试验,在不同CAV比例等多种条件下,分析CAV混合交通流优化控制对交通流车辆追尾碰撞风险的影响。研究结果表明:CAV混合交通流优化控制可降低车辆追尾碰撞风险,在碰撞时间阈值小于2 s时,100%比例的CAV交通流可将交通流的车辆追尾碰撞风险降低85.81%以上;在碰撞时间阈值大于2 s时,追尾碰撞风险可降低48.22%~78.80%。所提优化控制方法可有效降低CAV车队优化控制的复杂性,为大规模CAV背景下的混合交通流优化控制以及车辆追尾碰撞交通安全提升策略提供直接理论参考。  相似文献   

7.
以网联自动驾驶汽车(Connected Autonomous Vehicle, CAV)为研究对象, 研究了CAV车队通过城市信号交叉口的速度轨迹优化控制策略。基于最优控制理论, 采用CAV的自动驾驶模型描述车间相互作用, 以所有CAV车辆在行驶过程中的总油耗为优化目标, 根据信号灯的配时信息建立模型约束, 通过优化CAV头车的速度轨迹, 保证整个CAV车队在绿灯相位下快速通过交叉口并实现油耗最小。为了对该优化控制进行高效求解, 采用离散Pontryagin极小值原理建立最优解的必要条件, 利用基于神经网络训练的弹性反向传播(Resilient backpropagation, RPROP)算法设计了数值求解算法。多个典型场景的仿真结果显示: 整个CAV车队均能在不停车的情形下通过信号交叉口, 避免因在红灯时间窗到达停车线造成的停车、启动等过程, 总油耗量最高可减少69.74%。该控制方法利用网联自动驾驶技术的优势, 显著改善了城市交通通行效率和燃油经济性。   相似文献   

8.
随着汽车的智能化与网联化,混合动力汽车的节能驾驶技术已由单纯的动力总成能量管理向涵盖车-路-云一体化的综合控制演化,基于车速规划的经济性驾驶与基于路径规划的经济性路由可显著提高汽车的节油率。介绍了现有混合动力汽车的典型节能驾驶技术,指出了节能驾驶技术的商业价值及其节油潜力;归纳总结了经济性驾驶的研究现状,引出了路径规划对于能耗的重要影响;从能耗模型构建、路径优化问题建立和求解算法三方面系统梳理了经济性路由的研究现状,指明了其研究思路;探究讨论了多车混合经济性路由问题,为物流配送车辆的经济性调度提供了优化思路;对混合动力汽车节能驾驶技术的发展趋势进行展望。  相似文献   

9.
为了进一步提高自动驾驶汽车在交叉路口行驶时的燃油经济性,基于模型预测控制(MPC)理论,量化分析了车辆安全性、经济性、舒适性等多性能指标函数及约束,并设计了以经济性为主的交叉路口自动驾驶汽车生态驾驶控制器。仿真结果表明,所提出的控制策略能够保证良好的安全性和舒适性,与LQR控制器相比,在有前车影响和无前车影响工况下的百公里油耗分别降低15.83%和34.98%。  相似文献   

10.
为改善插电式混合动力汽车(PHEV)的燃油经济性,提出一种基于规则的能量管理策略。结合智能网联汽车技术,利用烟花算法(FWA)结合系统约束条件,对能量管理策略参数进行优化,以求使车辆在变化的路况下能耗最低。为减轻沉重运算负荷,设计了一种事件触发机制来控制优化操作的启停。当车辆油耗超过预设上限则开始优化,一旦油耗满足预设下限则优化结束。在中国典型城市工况下,验证了该策略的有效性及优化性能。结果显示:较优化前的能量管理策略,该方案可使PHEV燃料消耗降低10%。从而,使燃油经济性明显提升。  相似文献   

11.
网联协同控制是智能网联汽车的重要应用场景,而车联网的通信时延与丢包可能导致控制性能下降,甚至影响行车安全。为了分析时延与丢包对网联车辆控制的稳态与瞬态性能的影响,设计了网联控制器,并开展了仿真与实车试验。基于车辆动力学特性,将通信时延与丢包下的网联车辆控制分解为纵向控制与横向控制,进行了统一建模,并设计了控制器进行试验分析;搭建了网联自动驾驶的CarSim-Simulink联合仿真平台,及集成可模拟时延与丢包的LTE-V原理样机的智能网联汽车试验平台;开展了不同时延与丢包率下网联跟车控制与网联路径跟踪控制的仿真试验与实车试验。试验结果显示:时延与丢包对控制误差的影响形态有相似性;时延或丢包率取系统及工况参数有关的小值时,如试验中时延小于200 ms或丢包率小于20%,工况随机因素对控制误差的影响可能超过时延与丢包的影响;在更大的时延或丢包率下,时延与丢包的出现方式(如出现时机等)对控制误差影响更大。研究结果表明:能实现针对网联车辆控制系统通信特性的控制器优化设计,使得当时延与丢包在工况相关阈值内时,系统控制误差有界。所揭露的规律一方面可用于对造成危险控制误差的时延与丢包工况进行预警,另一方面也可用于基于给定的稳态或瞬态控制误差边界,判定对应工况允许的时延与丢包率边界。  相似文献   

12.
随着燃油价格持续上涨及企业用工成本上升,通过智能网联技术实现车队的智能化管理从而帮助物流企业降本增效成为人们关注的焦点。文章基于车联网采集的高分辨率车辆行驶数据,从经济性、安全性角度出发提取8个驾驶行为特征指标,利用熵权法确定各指标权重,再采用TOPSIS模型计算实现了对各行程司机驾驶行为的评价,实例计算结果表明,该方法能客观、有效地评价高速干线物流卡车司机驾驶行为,对物流企业开展生态驾驶培训、改善车队燃油经济性、驾驶安全性具有重要的参考价值。随着智能网联汽车的到来,该方法还可以为自动驾驶车速规划提供参考。  相似文献   

13.
为实现混合动力汽车的实时最优能量管理,提出一种基于智能网联的分层能量管理控制方法。上层控制器利用交通信号灯正时求解目标车速的范围,而采用快速模型预测控制(F-MPC)算法预测给定时间窗口内的最优目标车速序列。下层控制器根据最优目标车速序列,利用基于威兰斯线方法的等效燃油消耗最小策略(WLECMS)进行混合动力汽车能量管理。硬件在环试验结果表明,所提出的基于智能网联的上层控制器可避免混合动力汽车红灯停车,而F-MPC可实现与MPC相近的最优车速预测和燃油经济性,且每一时间步长的计算时间可缩短到MPC的7.2%;WL-ECMS可实现良好的车速跟随,百公里油耗与ECMS相当,且每一时间步长的计算时间可缩短到ECMS的1.48%。  相似文献   

14.
智能网联车辆具备提高交通安全与效率、降低能耗的巨大潜力.作为智能网联车辆决策控制的重要环节,运动规划对于智能网联车辆的循迹精度、控制效果具有显著影响.为了提高智能网联车辆控制精度,提出了一种智能网联车辆运动规划模型.该模型以追踪参考路径为目标,基于时空混合域的优化控制方法,避免了轨迹追踪过程中横向控制掺杂纵向误差的影响...  相似文献   

15.
智能汽车驾驶作为一项代表性的高新技术集成载体,能够提高车辆行驶安全性并减轻驾驶员操作负担,并且能够有效缓解交通拥堵压力。由于我国道路环境复杂多变,驾驶员经常采取超车变道操作,使得机动车超车变道的安全问题尤为严峻。为此,辅助驾驶员安全地完成超车变道过程,提出了基于纵侧向动力学控制的智能变道辅助系统,以车辆实际速度与目标速度为参数,设计具有滑模控制特性的控制器。仿真结果与硬件在环台架测试结果表明,基于纵侧向动力学控制的智能变道辅助系统能够较为有效地提高驾驶安全性,减轻驾驶员操作负担。  相似文献   

16.
鉴于驾驶员驾驶风格对混合动力汽车燃油经济性和排放性能有重要影响,本文中旨在通过对驾驶风格进行分类和识别,提高整车控制策略对驾驶风格的适应性,以改善整车的燃油经济性。首先以某款混合动力汽车为对象,对不同驾驶员的驾驶风格进行了实车道路试验和数据采集,接着采用主成分分析提取出表征驾驶风格的综合特征参数,并应用K-均值聚类对驾驶风格进行了聚类分析,最后在此基础上利用支持向量机算法对驾驶风格进行了识别。结果表明,驾驶风格的识别精度达到了90%以上,为混合动力汽车能量管理策略的进一步自适应优化奠定了基础。  相似文献   

17.
针对自动驾驶车辆行驶轨迹的横向跟踪问题,设计了线性时变模型预测控制器。以车辆3自由度动力学模型为预测模型,以横向位置偏差最小为主要控制目标,考虑车辆状态约束、控制约束和轮胎侧偏角约束,优化了自动驾驶车辆轨迹跟踪安全性、转向稳定性和操作可行性等多目标性能。搭建MATLAB/Simulink和CarSim联合仿真模型,并将所设计的控制器控制效果与熟练驾驶员操纵结果、线性二次规划控制器控制效果进行了比较分析,结果表明,所设计的控制器可以有效解决多约束条件下自动驾驶车辆行驶轨迹的横向跟踪问题,且在安全性、转向稳定性和操作可行性方面具有显著的优势。  相似文献   

18.
为使插电式混合动力汽车输出转矩充分符合驾驶员的驾驶意图,提出了一种模糊控制方法,并在Matlab/Simulink中建立了仿真模型.通过反模糊化,将设计的模糊控制规则转化成模糊控制查询表,移植到整车控制器中进行实车试验.仿真和试验结果表明,此控制系统能更好地辨识驾驶员的驾驶意图,车辆可平稳地逼近目标速度,达到了控制目的.  相似文献   

19.
自动驾驶技术为精确控制和优化车辆跟驰提供了条件,通过梳理近年来国内外网联混合交通的研究现状和发展动态,发现传统驾驶人的随机行为是影响交通系统稳定性的重要因素,网联车辆对于稳定车流态势具有良好的效果,从而也提高了车辆跟驰的安全性.为此,基于未来一段时间内网联车与人工驾驶共存的情形,研究网联混合交通的跟驰模型及稳态机理对于...  相似文献   

20.
作为近年来智能网联汽车领域的研究焦点,生态驾驶旨在提高驾驶安全的基础上,通过改善驾驶行为,有效缓解能源消耗和污染排放等问题,引起了各国政府、企业、高校和研究机构等的高度重视。同时,随着智能网联车辆技术的迅速发展,网联环境为生态驾驶提供了新的发展契机。为了分析智能网联车辆生态驾驶的研究进展,通过与传统生态驾驶进行对比,从车辆自身特性、驾驶人个性、道路交通状况与社会条件4个方面分析了智能网联环境下的生态驾驶的影响因素;从生态驾驶控制策略和生态驾驶应用现状2个方面对现有智能网联生态驾驶研究进行了归纳与分析;并从影响因素、控制策略和决策优化3个方面讨论了生态驾驶的意义、应用与目前所存在的问题,致力于为未来的相关研究提供有益的指导与借鉴。分析结果表明:智能网联环境下的生态驾驶和传统生态驾驶的影响因素较为相似,不过网联传感器和通信条件对智能网联环境生态驾驶有着较为显著的影响;相较于传统生态驾驶,智能网联环境下生态驾驶的控制策略与决策优化多考虑复杂驾驶工况、多车级别的全局生态驾驶;且由于各种新型技术的快速发展,结合先进的技术、适应行业发展需要也将成为未来智能网联生态驾驶发展的必然趋势。   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号