首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
以克拉玛依70#沥青作为基质沥青,进行了不同掺量BRA改性沥青性能试验研究。结果表明,随着BRA掺量的增加,改性沥青的感温性能、高温性能和低温抗裂性能均有显著提高,并据此推荐BRA的适宜掺量是20%。另外,为了进一步检验BRA的路用性能,还进行了基质沥青混合料和掺量20%BRA改性沥青混合料的车辙试验、浸水马歇尔试验、冻融劈裂试验和低温弯曲试验,结果显示,BRA改性沥青混合料是一种性能优良的沥青混合料。  相似文献   

2.
提高单一纤维和天然沥青改性沥青混合料的综合路用性能一直是工程界和学术界关注的热点。基于板带拉伸试验、BBR和DSR试验优化出了适宜的BRA与BF掺量范围,采用室内马歇尔、车辙、低温弯曲、浸水马歇尔、冻融劈裂、及四分点加载疲劳试验研究了BF/BRA复合改性沥青混合料的路用性能和抗疲劳性能。结果表明,将BRA与玄武岩纤维复配后可实现二者对BRA/BF复合改性沥青高温性能改善效果的叠加作用,BRA对玄武岩改性沥青低温性能有不利影响;掺加BF/BRA复合改性剂极大提高了沥青混合料的高温抗车辙性能,0.2%BF+25%BRA、0.3%BF+20%BRA、0.4%BF+15%BRA三种复合改性混合料的弯曲应变可达到3 000με以上,BRA/BF复合改性沥青混合料抗水损害性能优良。BRA/BF复合改性沥青混合料疲劳优于SBS改性沥青混合料,且疲劳寿命对应变水平的敏感性小于SBS改性沥青混合料。玄武岩纤维对沥青混合料疲劳性能的改善机理在于其"加筋阻裂作用"、"吸附稳定作用"、"界面增强作用"、"传力、消散力作用"及"加箍锁作用",有效延缓了加载过程中微裂缝的发生和发展,BRA对沥青混合料的改性机理在于其提高了沥青胶浆与集料之间的粘附性与沥青沥青混合料的劲度模量  相似文献   

3.
尚晓峰 《公路工程》2016,(4):78-83,101
为了改善高速公路重车道和城市道路交叉口路段沥青路面病害突出的问题,通过对BRA与SBS复合改性沥青及其混合料性能进行了系统研究,确定了BRA与SBS适宜的掺配比例,系统评价了复合改性沥青混合料的路用性能,并将其与SBS改性沥青混合料进行了对比。试验研究结果表明:增大SBS掺量后复合改性沥青黏度显著增大,高温PG分级明显提高,但同时又会对低温性能有所弱化,工程实践中只要严格控制BRA掺量才不会对复合改性沥青低温性能造成大的影响,推荐BRA与SBS复合改性沥青中,适宜的SBS添加量为2.5%~3.0%,BRA合理掺量为6%~8%。BRA与SBS复合改性沥青可大幅改善沥青混合料的高温稳定性,其抗疲劳耐久性优于SBS改性沥青混合料;实体工程和试验段检测结果表明,BRA与SBS复合改性沥青混凝土延长了道路的使用寿命,BRA与SBS复合改性沥青混合料对于解决重载交通的车辙和水损坏问题具有较高的应用价值。  相似文献   

4.
通过基质沥青混合料、BRA改性沥青混合料和SBS改性沥青混合料的路用性能室内研究,结合不同掺入方法对其路用性能的影响.得出:掺加BRA的SMA-10沥青混合料的路用性能明显优于基质沥青的高温性能,干法和湿法的BRA改性沥青混合料路用性能差别不显著,从节约成本和减少能耗考虑,推荐选择BRA的干法改性沥青混合料.  相似文献   

5.
为了更好地评价BRA改性沥青高温性能,对BRA掺量不同的改性沥青、SBS改性沥青进行了常规震荡剪切试验(DSR)和多应力蠕变恢复试验(MSCR),对比分析BRA改性沥青高温性能,并利用车辙试验验证BRA改性沥青混合料高温性能.结果 表明:PG高温性能分级难以准确区分不同种类沥青高温性能;BRA的掺入能显著增强沥青的高温变形恢复能力及抗永久变形能力;在一定条件下,高BRA掺量改性沥青的抗永久变形能力与SBS改性沥青相当;BRA改性沥青的应力敏感性较SBS改性沥青而言更不易受温度变化的影响;Jnr0.1、Jnr3.2可作为BRA改性沥青高温性能评价指标.  相似文献   

6.
布敦岩天然沥青(BRA)兼具性能和经济优势,为了研究BRA的路用性能,首先采用针入度等级评价方法对不同掺量的BRA改性沥青进行性能评价,其次结合长安街辅路大修工程利用车辙试验、浸水马歇尔试验、冻融劈裂试验及小梁低温弯曲试验对BRA改性沥青混合料路用性能进行试验研究。研究表明:BRA能有效改善沥青的高温性能、感温性能和抗老化性能,大大提高混合料的高温稳定性和水稳定性,而低温性能略有降低;BRA掺量不易超过30%,推荐掺量范围25%~30%,典型掺量30%。相关性研究表明:针入度、软化点、当量软化点与动稳定度相关性系数均在0.9左右,相关性良好,能有效评价BRA改性沥青的高温性能;延度指标不适于评价BRA改性沥青的低温性能;当量脆点、测力延度试验柔度系数与破坏应变相关系数分别达0.9643和0.9545,是BRA改性沥青低温性能的有效评价指标,且为保证混合料低温性能满足规范要求柔度系数应不大于412.6N/cm。  相似文献   

7.
为了弥补BRA改性沥青低温抗裂性能方面的技术缺陷,提出采用SBR与BRA复配方案对其进行改善。通过对不同BRA掺量下的BRA与SBR复合改性沥青流变特性,以及复合改性沥青混合料路用性能研究,结果表明,BRA掺量在10%~15%时,复合改性沥青混合料综合路用性能最佳,BRA与SBR复合改性沥青混合料的各项路用性能可达到甚至超过了SBS改性沥青混合料。  相似文献   

8.
为了研究热再生高模量沥青混合料的路用性能,通过将普通沥青和不同掺量的布墩岩沥青(BRA)配制成改性沥青,分析了BRA掺量对改性沥青性能的影响规律,并以改性沥青混合料的动态模量为指标确定了BRA的合理掺量。通过测试不同旧料掺量下的再生混合料的动态模量、高温稳定性、低温稳定性、水稳定性和疲劳性能,提出热再生高模量沥青混合料的旧料合理掺量。结果表明:随着BRA掺量的提高,改性沥青的高温稳定性有所提升,BRA的合理掺量为40%。旧料掺量的提升对于再生混合料的模量提高影响不大;旧料掺量的提升有益于改善再生混合料的抗车辙性,但会影响其低温稳定性;在旧料掺量小于60%时,对高模量再生混合料水稳定性影响不大;旧料掺量过高不利于高模量再生混合料的疲劳性能。  相似文献   

9.
《公路》2017,(12)
通过室内材料性能试验以及现场试验段测试,对比分析了BRA不同掺量改性的各项性能参数。试验结果表明:BRA中沥青质含量远高于平均水平,但胶质、油分比例低;BRA改性沥青混合料抗水损、高温性能好,但弯拉破坏应变较小;掺量为3%~4%,BRA综合改性效果相对较好。根据连续跟踪观测数据表明,BRA改性沥青路面破损率低,车辙小,总体平整度、抗滑、抗渗性能较好,具有较好的路用性能,可以大规模用于路面表面层,且适宜高温雨水较多的区域。  相似文献   

10.
SBS及BRA岩沥青改性沥青混合料性能比对研究   总被引:2,自引:0,他引:2  
通过对BRA岩沥青改性沥青混合料与SBS改性沥青混合料进行室内性能对比试验。同时结合宝鸡至陕甘界高速公路的工程项目实施,探讨了BRA岩沥青改性沥青混合料的技术优势,为岩沥青改性沥青混合料的广泛应用提供了技术参考。  相似文献   

11.
BRA改性沥青存在低温抗裂性能不足的技术缺陷,难以在寒冷冬天的河北地区使用,因此,针对这一问题,采用将BRA改性沥青与SBR改性剂复配的方案,以期提升BRA改性沥青混合料的综合路用性能,并为其混合料的组成设计和推广应用提供参考。  相似文献   

12.
针对广东地区在高温重载条件下的沥青路面易出现车辙、推移拥包等早期损坏,尤其是长大陡坡段的路面车辙等病害,在热拌沥青混合料配合比设计方法的基础上,对比研究了CZW抗车辙剂改性沥青混合料、70号普通沥青混合料和SBS改性沥青混合料的路用性能。试验研究表明,CZW抗车辙剂沥青混合料相比70号普通沥青混合料和SBS改性沥青混合料,具有更优异的高温稳定性能,CZW抗车辙剂可大幅提高70号普通沥青混合料的高温性能。在高温重载条件下,CZW抗车辙剂改性沥青混合料的动稳定度是70号普通沥青混合料的13倍;是SBS改性沥青混合料的1.3倍。CZW抗车辙剂改性沥青混合料路用性能良好,尤其适用于高温多雨、重载交通等特殊地区,具有较好的推广应用价值。  相似文献   

13.
以布敦岩沥青作为改性剂,70号基质沥青作为基础沥青,进行试验室内的布敦岩沥青改性沥青的生产制备,对AC-13C和AC-20C2种代表性级配沥青混合料的技术性能进行了试验研究,并对3%BRA最佳掺量的改性沥青混合料进行力学性能试验。结果表明:1BRA的掺入对沥青混合料高温性能和水稳定性的改善效果明显,不同矿料级配组成对BRA改性沥青混合料的路用性能影响较大;2低剂量BRA的掺入对沥青混合料低温抗裂性能的改善效果并不明显;33.0%BRA最佳掺量下改性沥青混合料的各项力学性能比基质沥青混合料有了大幅度的提高,适用于各气候地区公路路面结构层的铺筑。  相似文献   

14.
为研究高灰分岩沥青(BRA)改性沥青混合料的路用性能,考虑到BRA中灰分对矿粉的替代作用,在粉胶比1. 2的条件下,制备了不同BRA替换比例的AC-25型沥青混合料进行路用性能试验。结果表明,随BRA替换比例的增大,混合料的高温性能、水稳性能显著提高,低温抗裂性能提升幅度较小,BRA的最佳替换比例为75%。采用扫描电镜(SEM)和荧光显微镜分析BRA改性机理。结果表明,BRA对沥青胶浆的界面起到修饰作用,改善沥青胶浆的热储存稳定性,增加沥青胶浆与集料之间的粘附性。  相似文献   

15.
为研究PR PLAST.S抗车辙剂对沥青及沥青混合料的影响,采用沥青高速剪切机制备PR PLAST.S抗车辙剂改性沥青,测定各项性能指标及其离析程度,通过路用性能试验验证PR PLAST.S抗车辙剂对沥青性能的影响,对比干、湿拌法所制备的PR PLAST.S抗车辙剂改性沥青混合料的高、低温性能以分析PR PLAST.S抗车辙对沥青混合料中的改性机理。试验结果表明,PR PLAST.S抗车辙剂的掺入能显著提升沥青的软化点,同时降低了针入度、延度以及感温性;PR PLAST.S抗车辙剂改性沥青存在严重的离析问题;湿拌法PR PLAST.S抗车辙剂改性沥青混合料高温性能优越,低温稳定性不突出,但仍有一定的提升;由于AC-13型沥青混合料的悬浮密实型的结构特点,干拌条件下沥青混合料中抗车辙剂的双重改性作用没有得到充分发挥,高、低温性能均差于湿拌法PR PLAST.S抗车辙剂改性沥青混合料。  相似文献   

16.
对采用改性沥青的不同级配沥青混合料的车辙试验性能进行了比较,并以适当延长试验时间的方法比较了材料的抗车辙性能.试验结果表明,采用改性沥青的沥青混合料的抗车辙性能随着沥青掺量的变化和材料级配的不同存在很大差异;进一步的浸水车辙试验结果表明,使用了改性沥青的混合料,其抗车辙性能有了明显提高.  相似文献   

17.
该文采用改进的车辙试验和SPT试验评价SBS、PR、RS和DUROFLEX共4种抗车辙剂对Superpave沥青混合料高温抗车辙性能的改性效果,旨在判定SPT试验区分改性剂对沥青混合料高温抗车辙性能改性效果差异的有效性。采用车辙试验10 000次荷载作用下的相对变形率(δ)评价各种改性沥青混合料的抗车辙性能。结果表明:PR改性沥青混合料的高温抗车辙性能最好,RS次之,再次是SBS和DUROFLEX改性沥青混合料。SPT试验结果表明,流变次数Fn和流变时间Ft能区分SBS、PR、RS和DUROFLEX共4种改性沥青混合料高温抗车辙性能的差异,但与相对变形率的评价结论不完全一致,SBS改性沥青混合料的Fn和Ft值都是最大,表明其具有良好的抗车辙能力;采用动态模量参数E*和E*/sinφ,不能有效地区分改性沥青混合料抗车辙性能的差异。  相似文献   

18.
针对普通沥青混合料高温稳定性差的特点,分别对硅藻土改性沥青混合料、湖沥青改性沥青混合料、岩沥青改性沥青混合料及普通沥青混合料进行车辙试验,对比分析各改性沥青混合料相对普通沥青混合料动稳定度变化规律。研究表明:硅藻土改性沥青混合料、湖沥青改性沥青混合料及岩沥青改性沥青混合料相对普通的沥青混合料抗车辙性能大幅度提高,建议在经济条件允许的情况下,尽可能的在长大纵坡沥青路面面层采用这几种改性沥青混合料。  相似文献   

19.
为改善纤维和天然沥青单一改性沥青混合料的技术缺陷,将木质素、聚酯、玄武岩纤维与BRA岩沥青、TLA湖沥青、NES青川岩沥青进行复配。基于直接剪切试验优化了最佳的天然沥青掺配范围,采用车辙、低温弯曲、浸水马歇尔、冻融劈裂和四分点加载疲劳试验研究了天然沥青与纤维复合改性沥青混合料的路用性能和抗疲劳耐久性,试验结果表明,木质素、聚酯、玄武岩三种单纤维掺量为0.3%,BRA、TLA、NES掺量为8%~10%时天然沥青与纤维复合改性沥青经济性和抗剪切性能最优;将天然沥青与纤维复配后,可兼具纤维与天然沥青各自改性的优势,可实现二者对沥青改性效果的叠加,其混合料兼顾高低温性能、水稳定性和抗疲劳耐久性,且具有良好的经济性,为路面材料改性技术提供了一种新的选择。在0.3%木质素、聚酯、玄武岩纤维掺和8%~10%BRA、TLA、NES掺量范围内,18种天然沥青与纤维复合改性沥青混合料疲劳性能优于SBS改性沥青混合料,推荐用于复合改性沥青中的木质素纤维、聚酯纤维、玄武岩纤维掺量为0.3%,适宜的BRA、TLA、NES掺量分别为8%~10%、8%~12%、8%~10%。  相似文献   

20.
《公路》2017,(1)
为了研究抗车辙剂与橡胶粉复合改性沥青性能并对比分析不同橡胶粉和抗车辙剂掺量对复合改性沥青混凝土路用性能的改善程度,依托实体工程,选择4种橡胶粉掺量和4种KTL抗车辙剂掺量,通过对抗车辙剂与橡胶粉复合改性沥青及其混合料性能系统研究,评价了不同橡胶粉和抗车辙剂掺量下复合改性沥青针入度体系指标性能,基于车辙、低温弯曲、浸水马歇尔、冻融劈裂和弯曲疲劳试验确定了抗车辙剂和橡胶粉适宜的掺量比例,并铺筑了试验路。试验结果表明,掺加橡胶粉可显著改善沥青混凝土的低温抗裂性和抗疲劳耐久性,橡胶粉与抗车辙剂复合改性沥青混合料具有优良的高低温性能,复合改性沥青混合料的抗疲劳耐久性优于SBS改性沥青混合料。实体工程和试验段检测结果表明,橡胶粉与抗车辙剂复合改性沥青混凝土延长了道路的使用寿命,推荐最佳复合改性剂的掺配比例为0.4%KTL抗车辙剂+20%橡胶粉。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号