首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
为了研究不同造型结构的尾翼对整车空气动力学的影响,建立三维模型,利用Fluent软件对其进行分析计算,综合考虑动力性、经济性及稳定性的要求,同时进行风洞试验。结果表明:随着尾翼高度的增加,风阻系数先减少,后增加,后升力不断减少,前升力有所增加,增加的趋势比较缓慢。同时也认证了计算模型以及模拟结果的准确性,为以后的开发提供了一种经济、快速的方法。  相似文献   

2.
This study proposes an aerodynamically optimized outer shape of a sedan by using an Artificial Neural Network (ANN), which focused on modifying the rear body shapes of the sedan. To determine the optimization variables, the unsteady flow field around the sedan driving at very fast speeds was analyzed by CFD simulation, and fluctuations of the drag coefficient (C D ) and pressure around the car were calculated. After consideration of the baseline result of CFD, 6 local parts from the end of the sedan were chosen as the design variables for optimization. Moreover, an ANN approximation model was established with 64 experimental points generated by the D-optimal methodology. As a result, an aerodynamically optimized shape for the rear end of the sedan in which the aerodynamic performance is improved by about 5.64% when compared to the baseline vehicle is proposed. Finally, it is expected that within the accepted range of shape modifications for a rear body, the aerodynamic performance of a sedan can be enhanced so that the fuel efficiency of the sedan can be improved. The YF SONATA, a sedan manufactured by Hyundai Motors Corporate, played a major role in this research as the baseline vehicle.  相似文献   

3.
基于某SUV车型,通过数值计算和风洞试验研究了14种后扰流板和侧扰流板方案对整车气动性能的影响。结果表明,单独加装任意一种扰流板,其减阻效果均较小,而在后扰流板和侧扰流板的共同作用下,减阻效果最大可达3%,且所有方案在降低阻力的同时,都会使后升力增加。根据计算得到的流场信息和尾迹区结构特性分析了扰流板的减阻机理,并根据试验结果分析了不同方案对于升力的影响规律,为相似车型扰流附件的气动优化提供了参考依据。  相似文献   

4.
文章主要阐述了后扰流板总成注塑成型工艺及其结构设计,简单介绍多种后扰流板的结构设计及其工艺,结合成本、外观质量、设计强度等方面,详细介绍一种分体式后扰流板的结构设计方案。  相似文献   

5.
四轮转向汽车操纵动力学虚拟仿真分析   总被引:7,自引:0,他引:7  
焦凤  陈南  秦绪柏 《汽车工程》2004,26(1):5-8,19
从机械动力学仿真的角度,研究4WS汽车的瞬态和稳态操纵动力学特性。运用虚拟样机技术,给出4WS车辆在适当前轮转角及不同的大小、比值、方向以及转向时间差等后轮转角的条件下,车辆的瞬态和稳态动力学性能的表现。  相似文献   

6.
三轴汽车前后轮角输入时的响应特性   总被引:5,自引:0,他引:5  
本文详细推导了三轴汽车线性二自由度模型的运动微分方程,分析了汽车对前后轮角输入时的移居记响应特性。从汽车动力学的角度讨论了前后轮转应具备的比例关系。该方法同样适用于其它多轴汽车的建模分析。  相似文献   

7.
赖晨光  斯洋  陈祎  白海涛 《汽车工程》2020,42(5):600-607
针对传统导流器仅能单一地减小阻力或升力的问题,基于某直背车型设计一款能同时减小阻力和升力的新型导流器。首先,基于其需满足的流场条件确定导流器横截面初始的上下型线,并使用准均匀B样条进行拟合,再沿y方向拉伸出导流器的型面。接着,通过改变截面型线控制点,得到一系列不同的型面,运用遗传算法寻优找到导流器最优型面。最后,为进一步减小阻力和升力,基于导流器最优截面,改变导流器的宽度和安装位置与角度,并采用实验设计、近似模型和NSGA-II遗传算法进一步优化。模型风洞实验验证的结果表明:整车阻力减小3.8%,升力减小7.9%。  相似文献   

8.
Being a continuous subject of research, this study presents new aspects regarding the relevance of underbody diffusers in road vehicle aerodynamics. Using a generic car model on wheels as a reference, the effect of the wheels on the body fitted with an underbody diffuser was studied, where the diffuser length and angle were varied within ranges which are applicable for hatchback passenger cars. The results show that the vortices which originate from the rear wheelhouses have a major impact on the aerodynamics of the underbody diffuser, which results in increasing of drag and lift of the body. For cases studied, the average drag and lift increment due to the addition of wheels were (ΔcD)mean = 0.058, respectively (ΔcL)mean = 0.243. The lift of the body on wheels decreases with both diffuser length and diffuser angle, and there are situations when it may become negative as for a body without wheels. The results show also the possibility to reach a minimum drag according with normalised diffuser length.  相似文献   

9.
Computational model is developed to analyze aerodynamic loads and flow characteristics for an automobile, when the rear wing is placed above the trunk of the vehicle. The focus is on effects of the rear wing height that is investigated in four different positions. The relative wind incidence angle of the rear wing is equal in all configurations. Hence, the discrepancies in the results are only due to an influence of the rear wing position. Computations are performed by using the Reynolds-averaged Navier-Stokes equations along with the standard k-ε turbulence model and standard wall functions assuming the steady viscous fluid flow. While the lift force is positive (upforce) for the automobile without the rear wing, negative lift force (downforce) is obtained for all configurations with the rear wing in place. At the same time, the rear wing increases the automobile drag that is not favorable with respect to the automobile fuel consumption. However, this drawback is not that significant, as the rear wing considerably benefits the automobile traction and stability. An optimal automobile downforce-to-drag ratio is obtained for the rear wing placed at 39 % of the height between the upper surface of the automobile trunk and the automobile roof. Two characteristic large vortices develop in the automobile wake in configuration without the rear wing. They vanish with the rear wing placed close to the trunk, while they gradually restore with an increase in the wing mounting height.  相似文献   

10.
SUMMARY

Legislation limits the load that may be transferred to the roadway by the axies of a commercial vehicle and this has resulted in the development of multi axle bogies for both the tractor and trailer units of articulated vehicles and at the rear of rigid vehicles, some of these bogies contain self steering or articulation steered axles

Experience shows that the tyre wear characteristics of multi axle bogies may be unsatisfactory. The paper analyses the role of such bogies in the context of vehicle handling and shows how the lateral tyre forces vary between the axles. An hypotheses relating the forces in a steady state turn to wear is given. The analysis may also be applied to the general case of vehicle handling.  相似文献   

11.
Rollover mitigation for a heavy commercial vehicle   总被引:1,自引:0,他引:1  
A heavy commercial vehicle has a high probability of rollover because it is usually loaded heavily and thus has a high center of gravity. An anti-roll bar is efficient for rollover mitigation, but it can cause poor ride comfort when the roll stiffness is excessively high. Therefore, active roll control (ARC) systems have been developed to optimally control the roll state of a vehicle while maintaining ride comfort. Previously developed ARC systems have some disadvantages, such as cost, complexity, power consumption, and weight. In this study, an ARC-based rear air suspension for a heavy commercial vehicle, which does not require additional power for control, was designed and manufactured. The rollover index-based vehicle rollover mitigation control scheme was used for the ARC system. Multi-body dynamic models of the suspension subsystem and the full vehicle were used to design the rear air suspension and the ARC system. The reference rollover index was tuned through lab tests. Field tests, such as steady state cornering tests and step steer tests, demonstrated that the roll response characteristics in the steady state and transient state were improved.  相似文献   

12.
A vehicle model incorporating front and rear wheel suspensions and seat suspension is presented. The suspension control includes algorithms to provide both dynamic and steady state (levelling) control. Vehicle response to (a) vertical inputs due to ground disturbances at the wheels and (b) longitudinal inputs due to the inertial forces during braking and accelerating, are investigated. It is shown that the static (self-levelling) control causes a slight deterioration in dynamic performance. The active ride control produces improvements of ride comfort under dynamic conditions compared to an equivalent passively suspended vehicle. In steady state the proposed control eliminates the error heave of the body caused by tilting of the vehicle with active suspension.  相似文献   

13.
汽车高速运行时会产生空气动力学噪声,这对汽车乘坐的舒适性、车内乘客的相互交流都会有十分不利的影响。通过CFD手段,采用大涡模拟方法和Lighthill理论,对汽车外流场进行了计算和声学分析。结果表明,CFD不仅可以提供该车气动噪声特性,而且指出前挡风玻璃与车顶连接处、后视镜的造型、车门把手存在优化可能,这为进一步降低该车的风噪提供方向性指导。  相似文献   

14.
A comparison between two different approaches to vehicle stability control is carried out, employing a robust non-parametric technique in the controller design. In particular, an enhanced internal model control strategy, together with a feedforward action and a suitably generated reference map, is employed for the control of a vehicle equipped either with a rear wheel steering (RWS) system or with a rear active differential (RAD) device. The uncertainty arising from the wide range of operating conditions is described by an additive model set employed in the controller design. Extensive steady state and transient tests simulated with an accurate 14 degrees of freedom nonlinear model of the considered vehicle show that both systems are able to improve handling and safety in normal driving conditions. RAD devices can make the vehicle reach higher lateral acceleration values but they achieve only slight stability improvements against oversteer. On the other hand, 4WS systems can greatly improve both vehicle safety and manoeuvrability in all driving situations, making this device an interesting and powerful stability system.  相似文献   

15.
SUMMARY

The performance of neural networks to be used for identification and optimal control of nonlinear vehicle suspensions is analyzed. It is shown that neuro-vehicle models can be efficiently trained to identify the dynamical characteristics of actual vehicle suspensions. After trained, this neuro-vehicle is used to train both front and rear suspension neuro-controllers under a nonlinear rear preview control scheme. To do that, a neuro-observer is trained to identify the inverse dynamics of the front suspension so that front road disturbances can be identified and used to improve the response of the rear suspension. The performance of the vehicle with neuro-control and with LQ control are compared.  相似文献   

16.
The performance and safety of the rear wing and spoiler employed on the National Association of Stock Car Auto Racing (NASCAR) COT (car of tomorrow) racecar are experimentally studied using 10 % scale models in a water channel. Particle image velocimetry is used to qualitatively examine the differences in flow structures between the two downforce-generating devices under 0 and 180-degree yaw cases. The latter is important due to an issue with the COT flipping into the air when at extreme yaw (i.e. during a crash). At zero yaw, it is observed that smaller length scales of the flow structures in the wake of the wing compared to those in the wake of the spoiler, provide more predictable handling for racecars in close proximity and may allow more safe and competitive racing. At 180-degree yaw, it is observed that wake-structure interactions may not allow proper operation of anti-flipping devices (roof flaps) on the winged car. In the extreme yaw case, local flow scales are examined and show much stronger Reynolds number (Re) dependence for the wing than the spoiler.  相似文献   

17.
SUMMARY

A study on effective use of rear braking force to improve a brake performance and vehicle dynamics are carried out. On a ordinary condition, the rear braking force could be more increased to a conventional braking force distribution. Based on this thought, the brake performances are estimated. The results show the effects not only improve the brake performance but also reduce a pitching at braking and moderate a vehicle OS behavior in a turn during braking. These are verified by experimental test vehicle equipped with a rear braking force control system.  相似文献   

18.
为分析扭转梁C特性对稳态转向性能的影响,文章以模态综合法建立了某乘用车扭转梁后悬柔性模型,对建立的原型车进行侧向力C特性仿真,与对标车进行对比发现仿真与试验值存大较大差异,且侧向力前束特性存在较大的过度转向趋势.通过优化安装衬套的刚度使得原型车与试验结果吻合,最后对整车进行稳态回转仿真发现,负的前束侧向力特性不利于转向,优化后的模型提高了整车不足转向.  相似文献   

19.
This paper shows that, for a four-wheel steering vehicle, a proportional-integral (PI) active front steering control and a PI active rear steering control from the yaw rate error together with an additive feedforward reference signal for the vehicle sideslip angle can asymptotically decouple the lateral velocity and the yaw rate dynamics; that is the control can set arbitrary steady state values for lateral speed and yaw rate at any longitudinal speed. Moreover, the PI controls can suppress oscillatory behaviours by assigning real stable eigenvalues to a widely used linearised model of the vehicle steering dynamics for any value of longitudinal speed in understeering vehicles. In particular, the four PI control parameters are explicitly expressed in terms of the three real eigenvalues to be assigned. No lateral acceleration and no lateral speed measurements are required. The controlled system maintains the well-known advantages of both front and rear active steering controls: higher controllability, enlarged bandwidth for the yaw rate dynamics, suppressed resonances, new stable cornering manoeuvres and improved manoeuvrability. In particular, zero lateral speed may be asymptotically achieved while controlling the yaw rate: in this case comfort is improved since the phase lag between lateral acceleration and yaw rate is reduced. Also zero yaw rate can be asymptotically achieved: in this case additional stable manoeuvres are obtained in obstacle avoidance. Several simulations, including step references and moose tests, are carried out on a standard small SUV CarSim model to explore the robustness with respect to unmodelled effects such as combined lateral and longitudinal tyre forces, pitch, roll and driver dynamics. The simulations confirm the decoupling between the lateral velocity and the yaw rate and show the advantages obtained by the proposed control: reduced lateral speed or reduced yaw rate, suppressed oscillations and new stable manoeuvres.  相似文献   

20.
借助虚拟样机仿真技术,发现某预研项目车辆具有过多转向趋势,在全面分析车轴左右轮荷变化的基础上,深入探讨了车辆转向特性的影响因素.针对本项目提出可通过加粗前悬架横向稳定杆直径的办法来获得车辆的不足转向特性。通过对多种匹配方案的仿真分析和对比权衡,并结合国标对稳态回转实验的评价打分方法,最终确定把前后悬架侧倾角刚度之比由1.17增加到1.96,此时车辆的过度转向趋势得以消除,并具有了适度的不足转向特性。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号