首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
This paper discusses the numerical modeling of the dynamic coupled analysis of the floating platform and mooring/risers using the asynchronous coupling algorithm with the purpose to improve the computational efficiency when multiple lines are connected to the platform. The numerical model of the platform motion simulation in wave is presented. Additionally, how the asynchronous coupling algorithm is implemented during the dynamic coupling analysis is introduced. Through a comparison of the numerical results of our developed model with commercial software for a SPAR platform, the developed numerical model is checked and validated.  相似文献   

2.
The research on structural vibration and sound radiation of underwater ring-ribbed cylindrical shell, which is coated with a kind of deadening and decoupling materials, becomes a focus in recent years. This paper analyzes the problem on two aspects: model experiment and numerical calculation. The model experiment is carried out including three cases firstly, in which the structural vibration response and radiating acoustic field are measured respectively, and the results gained in these three cases are analyzed to discuss the effect of reducing structural vibration and radiating noise of the deadening and decoupling materials. The coupling FEM/BEM and the SEA methods are both used in numerical calculation, i.e. the arithmetic of the coupling FEM/BEM method is adopted to calculate the low frequency characteristics and the SEA method is adopted to calculate the medium-high frequencies characteristics of the model. By comparing experimental results with numerical calculation results, it is proved that the algorithm adopted in this paper is reasonable.  相似文献   

3.
The numerical simulation of wake and free-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable to predict the flow field around a hull. In this paper, a numerical framework is developed aimed at high-resolution CFD simulations of turbulent, free-surface flows around ship hulls. The framework consists in the concatenation of "tools", partly available in the open-source finite volume library Open FOAM. A novel, flexible mesh-generation algorithm is presented, capable of producing high-quality computational grids for free-surface ship hydrodynamics. The numerical frame work is used to solve some benchmark problems, providing results that are in excellent agreement with the experimental measures.  相似文献   

4.
The numerical simulation of wake and flee-surface flow around ships is a complex topic that involves multiple tasks: the generation of an optimal computational grid and the development of numerical algorithms capable to predict the flow field around a hull. In this paper, a numerical framework is developed aimed at high-resolution CFD simulations of turbulent, free-surface flows around ship hulls. The framework consists in the concatenation of "tools", partly available in the open-source finite volume library OpenFOAM. A novel, flexible mesh-generation algorithm is presented, capable of producing high-quality computational grids for free-surface ship hydrodynamics. The numerical frame work is used to solve some benchmark problems, providing results that are in excellent agreement with the experimental measures.  相似文献   

5.
[Objectives]This paper aims to address the numerical simulation problems of the dynamic response of ships subject to near-, medium- and far-field underwater explosions by establishing several numerical methods and calculation models. [Methods]First, load and fluid-structure interaction models are established on the basis of the Eulerian finite element method and acoustic finite element method using the field-split technique, and FSLAB fluid-structure interaction software is developed. Next, near-, medium- and far-field underwater explosions are numerically simulated respectively. The shock wave propagation law, bubble shape and load evolution characteristics of near free-surface and near-wall underwater explosions are obtained, and the shock response characteristics of a spherical shell and ship subject to far-field underwater explosions are analyzed. Finally, the FSLAB software results are compared with the analytical solutions, reference solutions and experimental data. [Results]The results show that the FSLAB fluid-structure interaction software developed in this paper is effective and accurate in simulating the impact damage of underwater explosions on warships. [Conclusion]This study can provide a basis and support for the power assessment of underwater anti-explosion and shock design of warships. © 2022 Journal of Clinical Hepatology. All rights reserved.  相似文献   

6.
The configuration and aerodynamic performance of the inlet system are important aspects in the process of installing a gas turbine on a naval vessel. Under the requirements, large eddy simulation (LES) is used to simulate the three-dimensional fluid flow in the wave blocker of a marine inlet filter. The Smagorinsky-Lilly sub-grid model was used to model motions of small-scale structures. During numerical simulation, the SIMPLE algorithm was applied. The central-differencing spatial discretization scheme and the second order accuracy finite difference for the temporal discretization were used. Simulation gives satisfactory distribution of the vorticity fields and turbulent kinetic energy. Compared with the k-ε turbulent model, the results of LES are better for the distribution of parameters. The results of experimental study in a small-scale wind tunnel indicate that numerical calculation has higher accuracy. Therefore, the methods used are worthy of reference and introduction for the design of an inlet system.  相似文献   

7.
In this paper,various aspects of the 2D and 3D nonlinear liquid sloshing problems in vertically excited containers have been studied numerically along with the help of a modified-transformation.Based on this new numerical algorithm,a numerical study on a regularly and randomly excited container in vertical direction was conducted utilizing four different cases: The first case was performed utilizing a 2D container with regular excitations.The next case examined a regularly excited 3D container with two different initial conditions for the liquid free surface,and finally,3D container with random excitation in the vertical direction.A grid independence study was performed along with a series of validation tests.An iteration error estimation method was used to stop the iterative solver(used for solving the discretized governing equations in the computational domain) upon reaching steady state of results at each time step.In the present case,this method was found to produce quite accurate results and to be more time efficient as compared to other conventional stopping procedures for iterative solvers.The results were validated with benchmark results.The wave elevation time history,phase plane diagram and surface plots represent the wave nonlinearity during its motion.  相似文献   

8.
[Objectives]In this paper, the numerical simulation method is used to study the anti-penetration performance and energy absorption mode of a stiffened plate, as well as the influence of different stiffened bars on the flight attitude of the projectile body.[Methods] Finite element software LS-DYNA is used to simulate the process of a truncated oval-nosed projectile penetrating a stiffened plate, and the results of the numerical simulation are compared with an experiment to verify the reliability of the numerical simulation method. The momentum method and mass equivalence method are used to predict the residual velocity of the projectile, and the applicability of different theoretical methods within different velocity ranges is compared. The deformation energy of different regions of the stiffened plate is then extracted to analyze the influence of the initial velocity of the projectile body on the energy absorption mode of the target plate. Finally, the structure of the stiffeners is changed and the influence of the relative position of the stiffeners on the penetration attitude of the projectile body is analyzed.[Results]The results show that the mass equivalence method is more accurate than the momentum method in predicting the residual velocity of the stiffened plate when the initial velocity of the projectile body is in the range of 300–900 m/s. The ratio of the deformation energy of the stiffened plate to the energy loss of the projectile body decreases with the increase of the initial velocity of the projectile body. The effect of a T-stiffened plate on trajectory is greater than that of a rectangular-stiffened plate.[Conclusions]The related calculation method and research results have certain reference value for research and engineering application surrounding the anti-penetration of stiffened plates. © 2023 Chinese Journal of Ship Research. All rights reserved.  相似文献   

9.
10.
This paper presents a study on the numerical simulation of planing crafts sailing in regular waves. This allows an accurate estimate of the seas keeping performance of the high speed craft. The simulation set in six-degree of freedom motions is based on the Reynolds averaged Navier Stokes equations volume of fluid (RANSE VOF) solver. The trimming mesh technique and integral dynamic mesh method are used to guarantee the good accuracy of the hydrodynamic force and high efficiency of the numerical simulation. Incident head waves, oblique waves and beam waves are generated in the simulation with three different velocities (Fn =1.0, 1.5, 2.0). The motions and sea keeping performance of the planing craft with waves coming from different directions are indicated in the flow solver. The ship designer placed an emphasis on the effects of waves on sailing amplitude and pressure distribution of planing craft in the configuration of building high speed crafts.  相似文献   

11.
基于一种新的二阶全非线性Boussinesq方程,采用预测-校正格式的有限差分法对该方程进行离散,建立了数值模型.模型中通过“狭槽法“来处理波浪在岸线处的动边界条件,采用涡粘模型来模拟波浪破碎引起的能量耗散.为了验证数值模型的适用性,模拟了斜坡地形上的波浪破碎和爬高.从数值结果和试验结果的比较上看,该模型可以很好地模拟近岸波浪场的实际问题.  相似文献   

12.
[目的]研究喷水推进器进口流道主参数对其性能的影响,为喷水推进器设计提供依据.[方法]基于STAR-CCM+商业软件,通过定常雷诺平均NS方程(RANS),数值模拟分析不同进速比(IVR)工况下喷水推进器进口流道轴线高度和进流角度对其水动力性能的影响,并根据国际拖曳水池会议(ITTC)的不确定度分析规程进行数值不确定度...  相似文献   

13.
高宁波  杨建民  李欣 《船舶力学》2016,20(6):955-963
可靠的波浪模拟方法对于海洋结构物水动力性能的评估而言至关重要。文章基于软件FLUENT,分别采用四种不同的网格模型,实现了对于规则波的模拟。文中采用VOF方法对自由液面进行捕捉,并采用动网格方法模拟摇板的运动从而实现造波。考虑到数值耗散及截断误差对数值模拟结果的影响,针对沿水池方向的波浪衰减情况进行了相关研究。为了避免造波板的初始运动所引起的波面扰动,引入了一种“缓入”方法使造波板缓慢地达到最大幅值的运动,有效地避免了初始扰动所带来的影响。数值模拟的结果分别与一阶和二阶理论解进行了对比。结果表明,该数值波浪模型能够给出可靠的预测,为下一步模拟强非线性波浪(如畸形波)奠定了基础。  相似文献   

14.
基于Autodesk平台的BIM技术在水运工程结构设计中缺少一款与建模软件Revit匹配的结构计算软件,为此提出一种将通用有限元结构计算软件ANSYS与Revit耦合的方法。由于Revit仅在族环境中才能建成水运工程参数模型,所以先对Revit基础图元类型进行编程分类,把可载入族赋予结构属性。采用Revit API技术过滤结构模型的几何信息、属性信息、材质信息,再将提取信息编译成ANSYS命令流文件,实现结构计算软件ANSYS与BIM建模软件的数据转换,并依据Revit布尔算法优化ANSYS结构计算前处理的映射网格划分步骤。最后使用某船闸主体工程进行验证,证明本方法在结构计算中运用是可行性的。  相似文献   

15.
邹建强  樊亮亮 《港工技术》2020,(2):39-40,64
本文基于CIVIL 3D建立某海外港口防波堤模型,解决在原有防波堤基础上新建防波堤后的工程量计算问题。本文将介绍整个建模过程和思路,通过软件分析得到新建防波堤的精准工程量,并通过构建原有防波堤BIM模型对比实际已建防波堤的工程量验证模型的正确性,最后通过对比传统防波堤计算方法表明基于CIVIL 3D软件的BIM建模更加精准有效。  相似文献   

16.
依托工程实例,基于Revit软件开展高桩码头BIM协同设计工作。在选取协同方法、模型拆分与组织、中间资料提送、多专业协同设计及模型整合方面进行应用研究,为开展类似工程BIM设计工作提供了参考。  相似文献   

17.
软件可靠性分配是保证软件质量的重要方法之一。该文提出了一种基于云模型的进化策略,并应用于求解软件可靠性分配模型,实例表明可以得到比常规的数值方法及遗传算法更精确的结果。  相似文献   

18.
本文以海外某新建集装箱码头工程为实例,通过对软件平台和协同方法的对比分析,选用以Autodesk平台为基础的软件开展BIM设计。并且通过成功的实践,对全过程BIM设计流程、港口工程模型建模流程进行了梳理;对数据交换问题进行了整理;对BIM模型应用点进行了介绍。探索出了一整套行之有效的港口工程全过程BIM设计应用技术路线和解决方案,可为该领域的BIM设计应用提供参考。  相似文献   

19.
This paper presents a benchmark study on the slamming responses of offshore structures’ flat-stiffened plates. The objective was to compare the fluid-structure interaction (FSI) simulation methodologies, modeling techniques, and established researchers' experiences in predicting slamming pressure. Three research groups employing the most common commercial software packages for numerical FSI simulations (i.e. LS-Dyna ALE, LS-Dyna ICFD, ANSYS CFX, and Star-CCM+/ABAQUS) participated in this study. Wet drop test data on flat-stiffened aluminum plates of light-ship-like bottom structures available in the open literature was utilized for validation of the FSI modeling. A summary of the experimental conditions including the geometry model and material properties, was distributed to the participants prior to their simulations. A parametric study on flat-stiffened steel plates having actual scantlings used in marine installations was performed to investigate the effect of impact velocity and plate rigidity on slamming response. The FE simulation results for the total vertical forces acting on the stiffened plates and their structural responses to those forces, as obtained from the participants, were analyzed and compared. The reliable and accurate predictions of slamming loads using the aforementioned commercial FSI software packages were evaluated. Additionally, equivalent static slamming pressures resulting in the same permanent deflections, as observed from the FSI simulations, were reported and compared with analytical models proposed by the Classification Standards DNV and existing experimental data for calculation of the slamming pressure. The study results showed that the equivalent load model depends on the water impact velocity and plate rigidity; that is, the equivalent static pressure coefficient decreases with an increase in impact velocity, and increases when impacting structures become stiffer.  相似文献   

20.
针对当前通用BIM建模软件无法反映填海工程的大沉降量问题,基于商用BIM软件进行二次开发,创建了填海工程BIM应用管理平台。平台支持监测数据的实时导入,实现了BIM模型与施工期沉降监测数据的动态关联。该平台可通过读取钻孔数据实现BIM模型生成,支持4种填海工程常用的监测数据分析与管理功能;并可以调用Navisworks软件实现施工进度与工程量的管理。此外,开发的专用数据库网站,利用配置权限、异地备份、数据加密等手段,提供数据存储、安全策略、数据归档的一整套解决方案。平台成功应用于实际工程中,效果良好。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号