首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Upheaval buckling of submarine pipelines occurs due to relative movement of pipeline and surrounding soil and is often triggered by high operational temperature of the pipeline, initial imperfection of the pipeline, or a combination of both. Since buckling can jeopardize the structural integrity of a pipeline, it is a failure mode that should to be taken into account for the design and in-service assessment of trenched and buried offshore pipelines. In this study, a series of vertical (uplift) and axial pullout tests were carried out on model pipe segments buried in soft clay deposit similar to that present in Bohai Gulf, China. Pipe segments with three different diameters (= 30 mm, 50 mm and 80 mm) were buried in different depth-to-diameter ratios ranging from 1 to 8. Based on the results of laboratory tests, nonlinear force–displacement relations are proposed to model soil resistance mobilized during pipeline movement. The proposed nonlinear soil resistance models are employed in finite element analysis of buried pipelines with different amplitudes of initial geometric imperfections. Thermal upheaval buckling behavior of pipelines operating at different temperatures is studied. Results show that the capacity of pipeline against thermal buckling increases with the burial depth and decreases with the amplitude of initial imperfection.  相似文献   

2.
Controlled lateral buckling is triggered by distributed buoyancy section at predesigned sites to release the axial force induced by high temperature and high pressure in subsea pipelines. Due to the larger diameter and smaller submerged weight of distributed buoyancy section, compared to the normal pipe section, imperfections are more easily introduced at the location of distributed buoyancy section. In this study, an analytical model is proposed to simulate lateral buckling triggered by a distributed buoyancy section for an imperfect subsea pipeline, which is validated by test data. Semi-analytical solutions are derived. First, snap-through buckling behaviour is discussed. Then the influence of initial imperfections on buckled configurations, post-buckling behaviour, displacement amplitude and maximum stress is discussed in detail. The results show that there is no snap-through phenomenon for large amplitude of initial imperfections, which appears only when the amplitude of imperfection is small enough. The displacement amplitude increases with the amplitude of initial imperfections, and it first increases and then decreases with wavelength of initial imperfection. Compared to a perfect pipeline, the maximum stress amplifies for relative small wavelength of initial imperfections. Therefore, a large enough wavelength of initial imperfection should be introduced.  相似文献   

3.
Subsea pipelines exposed to high temperature and high pressure (HTHP) conditions is susceptible to lateral buckling. In order to control lateral buckling, engineered buckle initiators, such as sleepers, are introduced to initiate planned lateral buckles along the pipeline at specific locations in order to ensure that the stress in each lateral buckle remains acceptable. In this study, taking the interaction of adjacent buckles into account, analytical solutions of antisymmetric lateral buckling mode triggered by sleepers are derived. With the proposed formulations, the method to obtain the accurate locations of lateral displacement amplitude and maxima of bending stress is presented and discussed. And a detailed comparison between symmetric and antisymmetric mode of lateral buckling triggered by single sleeper is presented. Moreover, the influence of the sleeper spacing on controlled lateral buckling behaviour with the consideration of axial interaction between adjacent buckles is conducted. Finally, a detailed analysis about the influence of the sleeper height, lateral frictional coefficient and submerged weight of the pipeline on the controlled post-buckling behaviour is presented. Our results show that, for smaller sleeper friction or smaller sleeper height, the symmetric mode is more likely to happen, while the antisymmetric mode is prone to occur for larger sleeper friction and larger sleeper height. One effective method to reduce displacement amplitude and maximum stress is to decrease the sleeper spacing. The minimum critical temperature difference decreases with increasing sleeper height and increases with increasing lateral friction coefficient or submerged weight of the pipeline. And an alternative way to reduce the maximum stress is to reduce the lateral friction coefficient or submerged weight of the pipeline even though the displacement amplitude increases.  相似文献   

4.
Submarine pipelines can utilize sleepers to control global buckling location, which mitigates potential risks under high temperature and pressure. However, pipelines with sleepers require execution in three-dimensional space and experience lateral buckling modes. As such, this paper proposes a 3D pipeline element for lateral buckling analysis, building on previous 2D element formulations. This new element considers non-linear pipe-soil interactions, thermal expansion, axial load, initial imperfections, large deflection, and other major factors that affect lateral buckling. The derivations of the 3D pipeline element are provided in detail, and the numerical analysis procedure is elaborated. To validate the accuracy and efficiency of the proposed 3D pipeline element, several examples are presented.  相似文献   

5.
张日曦  张崎  黄一 《船舶工程》2012,34(4):94-97
深水管道所处的特殊海洋环境极易导致其发生压溃屈曲破坏.通过深入分析不同径厚比深水管道的压溃屈曲特点,并对具有不同径厚比及初始椭圆度的深水管道模型进行了压溃屈曲及后屈曲行为的计算分析.研究发现,压溃屈曲的经典理论公式并不适用于小径厚比深水管道.文章基于经典理论和数值模拟结果,得到了适用于小径厚比深水管道压溃屈曲分析的临界压力修正公式,进而对小径厚比深水管道的压溃屈曲评估提供理论支撑和工程推荐.  相似文献   

6.
Buried marine pipelines employed in the Oil & Gas industry are subjected to pressure and temperature gradients, which cand produce local high compression loads leading to the onset of upheaval buckling failure. Upheaval buckling occurs when the localized stresses across the pipeline are high enough to induce constant deformation due to the low soil restriction in the upward direction. Therefore, models to predict upheaval buckling in buried marine pipes caused by high pressure and high temperature (HP/HT) and soil stiffness have been developed based on Euler-Bernoulli beam theory (EBT). However, this theory does not consider stresses and strains due to shear stresses which can play an important role in upheaval buckling failure. Therefore, in this work an analytical model that takes into account Engesser-Timoshenko beam theory (TBT) and considers the shear effects on pipelines was developed to predict upheaval buckling in buried marine pipelines. Furthermore, equations that govern vertical buckling of buried pipelines considering a plastic soil with initial imperfection were considered. Analytical results were compared with finite element models of buried pipeline and other models reported in the literature, and it was observed that analytical results fall in the range of those reposted in the literature. It was also observed that the incorporation of shear stresses in buried marine pipelines has low effect on upheaval buckling onset and propagation, but the soil stiffness has a strong influence on upheaval failure in buried marine pipelines.  相似文献   

7.
深海海底多跨管道相比于单跨,其涡激振动行为却更为复杂。文章考虑了两端跨肩和中间支撑处的管—土作用边界条件,提出了多跨管道涡激振动预报模型,标定了模型参数,并重点分析了跨肩边界条件、中间支撑条件和悬跨长度对管道涡激振动特性的影响。结果表明:较大的两端边界处扭转弹簧弹性系数、较大的中间支撑处扭转和拉伸弹簧弹性系数和较短的悬跨长度,会限制管道结构高阶模态的激发,同时还发现了振动能量会在相邻管跨之间传递的现象。  相似文献   

8.
含缺陷海底管道横向屈曲理论研究   总被引:2,自引:0,他引:2  
考虑了初始几何缺陷对管道屈曲临界载荷的影响,基于经典热屈曲理论,推导了平坦海床上裸铺管道横向屈曲临界载荷的理论公式,给出了无限远处管道轴向力的计算公式及临界温度的计算公式。建立了平坦海床上裸铺管道的非线性有限元模型,并将有限元结果与解析结果进行了对比,验证了解析公式的合理性。  相似文献   

9.
Unburied subsea pipelines under high-temperature conditions tend to relieve their axial compressive stress by forming localised lateral buckles. This phenomenon is traditionally studied under the assumption of a specific lateral deflection profile (mode) consisting of a fixed number of lobes. We study lateral thermal buckling as a genuinely localised buckling phenomenon by applying homoclinic (‘flat’) boundary conditions. By not having to assume a particular buckling mode we are in a position to study transitions between these traditional modes in typical loading sequences. For the lateral resistance we take a realistic nonlinear pipe-soil interaction model for partially embedded pipelines. We find that for soils with appreciable breakout resistance, i.e., nonmonotonicity of the lateral resistance characteristic, sudden jumps between modes may occur. We consider both symmetric and antisymmetric solutions. The latter turn out to require much higher temperature differences between pipe and environment for the jumps to be induced. We carry out a parameter study on the effect of various pipe-soil interaction parameters on this mode jumping. Away from the jumps post-buckling solutions are reasonably well described by the traditional modes whose analytical expressions may be used during preliminary design.  相似文献   

10.
Pipelines exposed to high temperature and high pressure with a topographic step imperfection are susceptible to the phenomenon of upheaval buckling potentially leading to a hazard for the structural integrity of the pipeline. To analyse this problem we derive analytical upheaval buckling solutions and obtain the locations of maximum displacement and maximum axial compressive stress. We also analyse the typical post-buckling behaviour and its dependence on step height, axial soil resistance and wall thickness. The difference in behaviour between a pipeline with step imperfection and one with a symmetric prop imperfection is discussed. Our results show that a pipeline with a step imperfection is more prone to upheaval buckling than a perfect pipeline. For sufficiently small step heights the pipeline may suffer a snap-back instability under decreasing thermal loading, raising the possibility of hysteretic snap behaviour under cyclic thermal loading (for instance caused by periodic start-ups and shut-downs). The snap-back buckling disappears for large enough step height and the minimum critical temperature difference decreases with increasing step height and wall thickness or with decreasing axial soil resistance. The maximum compressive stress decreases with increasing step height and axial soil resistance or with decreasing wall thickness. A pipeline with step imperfection is safer than one with a symmetric prop imperfection.  相似文献   

11.
The dynamic buckling of the main deck grillage would result in the total collapse of the ship hull subjected to a far-filed underwater explosion. This dynamic buckling is mainly due to the dynamic moment of the ship hull when the ship hull experiences a sudden movement under impact load from the explosion. In order to investigate the ultimate strength of a typical deck grillage under quasi-static and dynamic in-plane compressive load, a structure model, in which the real constrained condition of the deck grillage was taken into consideration, was designed and manufactured. The quasi-static ultimate strength and damage mode of the deck grillage under in-plane compressive load was experimentally investigated. The Finite Element Method (FEM) was employed to predict the ultimate strength of the deck grillage subjected to quasi-static in-plane compressive load, and was validated by comparing the results from experimental tests and numerical simulations. In addition, the numerical simulations of dynamic buckling of the same model under in-plane impact load was performed, in which the influences of the load amplitude and the frequency of dynamic impact load, as well as the initial stress and deflection induced by wave load on the ultimate strength and failure mode were investigated. The results show that the dynamic buckling mode is quite different from the failure mode of the structure subjected to quasi-static in-plane compressive load. The displacements of deck edge in the vertical direction and the axial displacements are getting larger with the decrease of impact frequency. Besides, it is found that the dynamic buckling strength roughly linearly decreased with the increase of initial proportion of the static ultimate strength P0. The conclusions drawn from the researches of this paper would help better designing of the ship structure under impact loads.  相似文献   

12.
实肋板式耐压液舱结构计算方法研究   总被引:6,自引:0,他引:6  
应用弹性力学经典理论和求解环肋柱壳的传统方法,将耐压液舱结构的几种结构形式综合成统一的力学模型,进行整体求解,获得各应力解析表达式;提出了液舱区耐压船体壳板极限承载能力及波舱壳板失稳压力的计算方法。力学模型清晰合理,求解简便,计算结果符合实际,可应用于工程设计。  相似文献   

13.
Rogue buckles may occur for unburied subsea pipelines operating under high temperature and high pressure conditions. Distributed buoyancy section (DBS) is often installed to trigger pipeline lateral buckling. Single distributed buoyancy section (SDBS) is normally adopted to trigger a symmetric lateral buckling mode. But in some cases, dual distributed buoyancy sections (DDBS) with a gap between them are utilised to trigger an antisymmetric lateral buckling mode. This paper concerns the behaviour of antisymmetric lateral buckling triggered by DDBS. First, the locations of the maxima of the deflection and bending stress are determined. Then, comparisons of the post-buckling behaviour between antisymmetric buckling mode, triggered by DDBS, and symmetric buckling mode, triggered by SDBS, are presented and discussed. The influences of the spacing between dual buoyancy sections and the parameters of the DBS on the buckled configuration and post-buckling behaviour are presented. Finally, the effects of the DBS on the minimum critical temperature difference, the maxima of the deflection and stress are discussed. The results show that the maxima of the deflection and stress of the antisymmetric mode are much smaller than that of the symmetric mode under the same operating conditions. During the design process, the spacing between dual buoyancy sections, the length and the weight ratio coefficient of the DBS should be determined in sequence.  相似文献   

14.
考虑筋/板相互作用的环肋圆柱壳屈曲强度分析   总被引:8,自引:0,他引:8  
环肋圆柱壳是潜艇耐压壳体的一种主要结构形式.环肋圆柱壳的失稳破坏主要表现在肋骨间的壳板失稳和总体失稳.在计算肋骨间的壳板失稳时,传统方法认为肋骨为壳板提供简支边界,忽略了在边界上肋骨和壳板的相互影响.在实际结构中,由于肋骨提供扭转刚度,壳板在与肋骨相交的边界上将存在弯矩,并非自由支持边界.因而,壳板失稳时,筋/板产生相互影响,提高了壳板的屈曲强度.本文的主要目的是,推导考虑筋/板相互影响的环肋圆柱壳壳板屈曲强度的理论计算方法,分析筋/板的相互关系.通过本文的算例表明,本文推导的计算方法以及所编制的计算程序是可靠的,可以用于工程设计.  相似文献   

15.
Expansion of pipelines installed on the sea floor due to the passage of high temperature and pressure hydrocarbons leads to lateral buckling. Interaction with a frictional sea floor can result in localization of such buckles, which must be controlled to ensure that the local bending is within acceptable limits. Periodic geometric imperfections introduced to a pipeline installed by reeling using the Residual Curvature Method are modeled and their effectiveness as expansion loops is evaluated. The imperfections are generated by allowing chosen lengths of the line to retain a small curvature by judicious action at the straightener. The model properly accounts for the complex interactions between geometric and material nonlinearities with frictional forces. It is demonstrated that as the temperature increases, the line can buckle in a snap-through manner, or can grow stably usually causing plastic deformation in its crest. The behavior is governed by the length, curvature, amplitude and periodicity of the imperfection, and by the lateral and axial frictional forces that develop. The effect of each of these variables is studied parametrically. Overall, the Residual Curvature Method is found to be a viable and effective method of controlling lateral buckling. The results provide guidance on the optimal periodicity, how to avoid snap-through buckling, and how to simultaneously minimize plastic bending.  相似文献   

16.
Sandwich pipes have been studied as one option to overcome the high pressure problems in deep and ultra-deep waters. They have become a possible alternative solution for submarine infrastructure due to its thermal insulation capacity. This contribute to preventing the pipeline from clogging due to the difference in temperature between reservoir fluids and water at the bottom of the sea. The pipelines in ultra-deepwater are continually exposed to severe operating conditions, such as the effect of high levels of external pressure that can cause local deformation or even collapse of the pipe. Thus, a greater understanding of the mechanical behavior of sandwich pipes is required. This paper presents a FEM-based evaluation of friction and initial imperfection effects on sandwich pipes local buckling. The non-linear evaluation was carried out in FEM of local buckling of two sandwich pipes, with polypropylene and cement as filled annular material. The influence of initial imperfections and the degree of friction, between the annular material and the steel pipes, as well as geometric variations of the pipe were considered. The numerical simulations results indicate a capacity to withstand ultra-deep waters collapsing pressures, around 3000 m, either for polypropylene or cement filled annular material model. In addition, the results indicate that the collapse pressure is inversely proportional to the increase in annular thickness and directly proportional to the decrease in friction which have an impact and contribution on the carrying capacity of the sandwich pipe. Further research will consider a design of experiments analysis of reported effects for different diameter-to-thickness ratios.  相似文献   

17.
李小超  王永学 《船舶力学》2012,16(7):797-803
讨论了目前用于海底悬跨管线涡激振动预报的主要数值模型,针对海底管线悬跨段涡激振动问题编制了有限元分析程序,程序采用梁单元模拟管跨结构,动力响应计算方法采用VIVANA模型,模型控制方程采用Newton-Raphson迭代算法求解。采用Larsen,Koushan等人(2002)和Larsen,Baarholm等人(2004)给出的两组不同的用于确定升力曲线的参数曲线进行计算,将计算结果与Tsahalis(1984,1987)的模型实验结果进行了比较。结果表明本文的涡激振动模型能够预报间隙比e/D=∞时海底悬跨管线的涡激振动响应;采用Larsen,Koushan等人(2002)参数曲线得到的计算结果与间隙比e/D=∞时的实验结果符合较好,Larsen,Koushan等人(2002)参数曲线较Larsen,Baarholm等人(2004)参数曲线更适合于海底悬跨管线的涡激振动预报。  相似文献   

18.
针对生产期间的双层海管试压工期长、油田关停损失大的特点,分析双层管对海床的传热机理中的对环境敏感因素,基于DNV-OS-F101规范要求,以初期的不稳定传热数据替代常规的稳态传热数据,对比理论计算与实测数据差异,用以判断海管是否发生渗漏,结果表明,油田的关停损失大幅减少,可供需要试压的在役双层海管管理参考。  相似文献   

19.
Untrenched submarine pipelines lying on the seabed are vulnerable and can be damaged by the impact of falling objects. This may cause significant economic costs for repair and even environmental contamination in case of rupture and oil leakage. This paper presents assessment of submarine pipeline damage subjected to falling object impact considering the effect of seabed through nonlinear explicit dynamic finite element modelling. The numerical model was first verified against existing experimental results and established studies. A total of 209 cases of parametric study was then conducted to assess pipeline damage by accounting for various factors, including object mass, velocity and seabed conditions. The results show that the pipeline damage can be directly related to the impact kinetic energy of the falling object for pipelines sitting on rigid bed. In other words, falling objects with the same impact energy (while mass and velocity may vary) cause the same damage to a pipeline. For a pipeline on a soil seabed, however, this study shows that pipeline damage is no longer simplistically determined by the impact kinetic energy of the falling objects. Falling objects with different mass and velocity may cause different pipeline damages, even though the impact energy is the same. It is interesting to find out that objects with a smaller mass (i.e. higher velocity) tend to cause greater damage than objects with a greater mass (i.e. lower velocity), when the total impact kinetic energy of the falling objects is the same. These observations are explored in this paper, which is explained with the variation of the energy absorption due to the existence of soil seabed.  相似文献   

20.
国外海底管道屈曲传播及止屈试验技术综述   总被引:1,自引:0,他引:1  
海底管道屈曲传播机理极其复杂,涉及到弹塑性稳定后屈曲问题,须通过大量的试验进行研究.文章概述了国内外海底管道屈曲传播理论研究发展历程,着重介绍了国外在海底管道屈曲传播与止屈试验技术方面的研究,总结和评述了国外相关试验装置的特点,探讨屈曲传播压力、传播速度、止屈效率等关键因素的试验测定方法,并指明了管道屈曲传播与止屈试验技术的发展方向,为海底管道屈曲传播及止屈试验设计提供指导.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号