首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
刘羽霄 《中国造船》2013,(1):109-113
平坦海床上裸铺管道不可能仅在一个位置发生屈曲,而是在一系列位置均有可能发生。为了激发第二个屈曲,两个屈曲之间应该保持足够的间距。如果两个屈曲之间的距离过小,则相邻屈曲之间的轴向力将达不到第二个屈曲的临界荷载,无法激发第二个屈曲。论文提出了最小屈曲间距的滑动距离判别法,给出了最小屈曲间距的判别公式。  相似文献   

2.
考虑船舱进水导致船体梁的结构崩溃而发生沉没的事故中舱壁是一个关键的环节,通过能量法导出舱壁扶强材在侧向静水压力作用下的弹性屈曲的临界载荷公式,与有限元数值计算比较,证明文中计算公式的正确、简单、实用性。  相似文献   

3.
为保证船舶船体结构安全,计算船舶临界载荷至关重要。在此背景下,针对切片理论、水弹性理论建立的模型计算精确度低的问题,设计一种新的快速船舶临界载荷计算数学模型,该模型建立主要依据有限元法,先建立一个船舶船体结构有限元模型,然后采用Patran的PCL语言对模型自动施加压力,最后根据得出的船体结构初始屈曲,利用半经验公式法确定船舶临界载荷。结果表明:与基于切片理论、水弹性理论建立的模型相比,本模型计算得出的船舶临界载荷与真实结果更为接近,误差最小,证明了本模型的精度更高,达到了研究目的。  相似文献   

4.
以单立柱固定式海洋平台的柱形壳桩腿为研究对象,得到复合材料柱形壳较为合理的结构尺寸、铺层方式,提高其轴向承载能力.首先,通过碳纤维增强复合材料(carbon fiber reinforced plastics,CFRP)材料单轴拉伸试验得到复合材料柱形壳试验样本的材料属性,用于柱形壳的计算与分析.其次,基于复合材料薄壳理论,得到轴压复合材料柱形壳屈曲临界载荷解析解,对比线弹性屈曲有限元分析,验证了理想柱形壳有限元模型建立的正确性.再次,由复合材料柱形壳缺陷测量试验得到其初始几何缺陷,由轴向压缩试验得到其轴压屈曲特性,对比非线性屈曲有限元分析,验证了缺陷柱形壳有限元模型建立的正确性.最后,结合线弹性屈曲分析结果,引入模态缺陷,从线弹性和非线性屈曲分析两个方面,研究铺层角、铺层数、各层纤维厚度、几何尺寸对复合材料柱形壳轴向承载能力的综合影响规律,得到各模型的屈曲特性与缺陷敏感性.从生产制造与工程实际出发,建立一种系统的CFRP型复合材料柱形壳设计计算流程、失稳分析方法,对于复合材料柱形壳的设计、校核、优化具有指导性作用.  相似文献   

5.
文章针对内置式框架肋骨加强的长舱段,推导了框架肋骨临界刚度的理论计算公式,给出了舱段框架肋骨临界刚度的计算方法;通过 ANSYS 有限元软件,比较分析了舱段失稳临界压力理论公式计算结果与有限元计算结果之间的误差,指出现行舱段失稳临界压力理论计算公式存在一定的适用范围;以舱段失稳压力有限元结果为修正基准值,引入修正系数 k 修正理论计算公式,以提高理论计算结果的准确性。  相似文献   

6.
王建忠  吴剑国  单鲁阳  洪英 《船舶》2012,23(4):49-53
采用能量法分析三边简支板在剪切荷载作用下的弹性屈曲性能,推导三边简支板格受剪下的临界屈曲应力计算公式。采用有限元方法进行均匀受剪三边简支板格弹性屈曲的数值验证计算。结果表明:当长细比大于1.5时,临界应力计算公式与有限元计算结果吻合较好。  相似文献   

7.
张永强 《上海造船》2017,33(3):18-22
圆柱形管状结构在海洋工程领域中应用较多,在进行结构设计时,需重点关注其侧向受载时的屈曲强度问题。通过理论分析和数值模拟,对比研究径向线性载荷变化下圆柱壳的屈曲行为,以经典的Donnell壳体理论为基础,得到圆柱壳的屈曲控制方程,并通过本征值分析方法得到结构屈曲的临界条件。采用有限元软件ABAQUS对线性变化径压下圆柱壳的屈曲进行数值仿真。分析得出径厚比是径向线性分布载荷下圆柱壳屈曲临界载荷的主要影响因素,三角形径压下屈曲临界载荷值约为均布径压下屈曲临界载荷值的2倍。  相似文献   

8.
波浪作用下砂质海床最大液化深度   总被引:1,自引:0,他引:1  
根据线性波浪作用下饱和海床内孔隙水压力分布的解析解和波浪作用下海床液化的判别准则,推导了均匀海床最大液化深度的计算公式,并根据该公式提出了防止海床液化措施的建议。  相似文献   

9.
为研究登船栈桥圆筒体的屈曲性能,对圆筒体进行有限元屈曲分析,并对比屈曲理论分析、特征值屈曲分析和非线性屈曲分析的临界载荷计算结果,验证圆筒体结构的可靠性。研究加筋对圆筒体屈曲的影响,给出圆筒体加筋设计的合理建议。  相似文献   

10.
密加筋板结构的稳定性分析   总被引:2,自引:0,他引:2  
杨平  刘彦峰 《船海工程》2006,35(6):17-19
根据密加筋板结构的特点,基于中间有弹性支座连续压杆的稳定性理论分析方法,推导出单向受压密加筋板结构整体失稳时临界载荷的实用计算公式,并与有限元的数值解进行了比较。结果表明,公式形式简单、运用方便、结果准确、便于在工程中实际应用。  相似文献   

11.
Controlled lateral buckling is triggered by distributed buoyancy section at predesigned sites to release the axial force induced by high temperature and high pressure in subsea pipelines. Due to the larger diameter and smaller submerged weight of distributed buoyancy section, compared to the normal pipe section, imperfections are more easily introduced at the location of distributed buoyancy section. In this study, an analytical model is proposed to simulate lateral buckling triggered by a distributed buoyancy section for an imperfect subsea pipeline, which is validated by test data. Semi-analytical solutions are derived. First, snap-through buckling behaviour is discussed. Then the influence of initial imperfections on buckled configurations, post-buckling behaviour, displacement amplitude and maximum stress is discussed in detail. The results show that there is no snap-through phenomenon for large amplitude of initial imperfections, which appears only when the amplitude of imperfection is small enough. The displacement amplitude increases with the amplitude of initial imperfections, and it first increases and then decreases with wavelength of initial imperfection. Compared to a perfect pipeline, the maximum stress amplifies for relative small wavelength of initial imperfections. Therefore, a large enough wavelength of initial imperfection should be introduced.  相似文献   

12.
Subsea pipelines exposed to high temperature and high pressure (HTHP) conditions is susceptible to lateral buckling. In order to control lateral buckling, engineered buckle initiators, such as sleepers, are introduced to initiate planned lateral buckles along the pipeline at specific locations in order to ensure that the stress in each lateral buckle remains acceptable. In this study, taking the interaction of adjacent buckles into account, analytical solutions of antisymmetric lateral buckling mode triggered by sleepers are derived. With the proposed formulations, the method to obtain the accurate locations of lateral displacement amplitude and maxima of bending stress is presented and discussed. And a detailed comparison between symmetric and antisymmetric mode of lateral buckling triggered by single sleeper is presented. Moreover, the influence of the sleeper spacing on controlled lateral buckling behaviour with the consideration of axial interaction between adjacent buckles is conducted. Finally, a detailed analysis about the influence of the sleeper height, lateral frictional coefficient and submerged weight of the pipeline on the controlled post-buckling behaviour is presented. Our results show that, for smaller sleeper friction or smaller sleeper height, the symmetric mode is more likely to happen, while the antisymmetric mode is prone to occur for larger sleeper friction and larger sleeper height. One effective method to reduce displacement amplitude and maximum stress is to decrease the sleeper spacing. The minimum critical temperature difference decreases with increasing sleeper height and increases with increasing lateral friction coefficient or submerged weight of the pipeline. And an alternative way to reduce the maximum stress is to reduce the lateral friction coefficient or submerged weight of the pipeline even though the displacement amplitude increases.  相似文献   

13.
海底管道是海洋油气集输系统中最重要的组成部分之一,从铺设到服役都将承受多种载荷的作用,并可能发生局部屈曲且沿管道传播开来,由此造成严重的后果。海底管道的局部屈曲在管道安全性方面具有重要意义,已成为海底管道设计与评估中重要的内容。详细阐述了国外关于海底管道受外压、弯矩和轴力作用下的局部屈曲研究成果,论述了在单个载荷和多个载荷联合作用下的局部屈曲破坏机理,并提出了未来研究的建议。  相似文献   

14.
In order to release the axial compressive force resulting from high-temperature conditions, sleepers or distributed buoyancy sections are usually installed along the route of the subsea pipeline as the buckle initiation facilities to trigger lateral buckles. DNV-RP-F110 suggests that the individual buckle initiators can be combined to further increase the reliability of buckle formation. In this study, an improved buckle initiation technique, called the combined sleeper and distributed buoyancy section, is investigated. A generalised mathematical model is proposed to simulate lateral buckling triggered by the combined sleeper and distributed buoyancy section, and it can also be applied to simulate lateral buckling triggered by an individual technique, such as triggered only by sleeper or only by distributed buoyancy section. The mathematical model is verified by comparing with the solutions in the literature. The parametric analysis shows that the buckle formation reliability can be improved when the combined sleeper and distributed buoyancy section is employed. Moreover, both the axial force and the maximum stress along the buckled pipeline in the post-buckling stage are at a lower level, so the pipeline will be safer when the combined sleeper and distributed buoyancy section is utilised as the triggers.  相似文献   

15.
Unburied subsea pipelines under high-temperature conditions tend to relieve their axial compressive stress by forming localised lateral buckles. This phenomenon is traditionally studied under the assumption of a specific lateral deflection profile (mode) consisting of a fixed number of lobes. We study lateral thermal buckling as a genuinely localised buckling phenomenon by applying homoclinic (‘flat’) boundary conditions. By not having to assume a particular buckling mode we are in a position to study transitions between these traditional modes in typical loading sequences. For the lateral resistance we take a realistic nonlinear pipe-soil interaction model for partially embedded pipelines. We find that for soils with appreciable breakout resistance, i.e., nonmonotonicity of the lateral resistance characteristic, sudden jumps between modes may occur. We consider both symmetric and antisymmetric solutions. The latter turn out to require much higher temperature differences between pipe and environment for the jumps to be induced. We carry out a parameter study on the effect of various pipe-soil interaction parameters on this mode jumping. Away from the jumps post-buckling solutions are reasonably well described by the traditional modes whose analytical expressions may be used during preliminary design.  相似文献   

16.
Rogue buckles may occur for unburied subsea pipelines operating under high temperature and high pressure conditions. Distributed buoyancy section (DBS) is often installed to trigger pipeline lateral buckling. Single distributed buoyancy section (SDBS) is normally adopted to trigger a symmetric lateral buckling mode. But in some cases, dual distributed buoyancy sections (DDBS) with a gap between them are utilised to trigger an antisymmetric lateral buckling mode. This paper concerns the behaviour of antisymmetric lateral buckling triggered by DDBS. First, the locations of the maxima of the deflection and bending stress are determined. Then, comparisons of the post-buckling behaviour between antisymmetric buckling mode, triggered by DDBS, and symmetric buckling mode, triggered by SDBS, are presented and discussed. The influences of the spacing between dual buoyancy sections and the parameters of the DBS on the buckled configuration and post-buckling behaviour are presented. Finally, the effects of the DBS on the minimum critical temperature difference, the maxima of the deflection and stress are discussed. The results show that the maxima of the deflection and stress of the antisymmetric mode are much smaller than that of the symmetric mode under the same operating conditions. During the design process, the spacing between dual buoyancy sections, the length and the weight ratio coefficient of the DBS should be determined in sequence.  相似文献   

17.
In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs,which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio(SDR) versus virtual anchor length(LA) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline,offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.  相似文献   

18.
Global buckling of a submarine pipeline during high pressure/high temperature (HP/HT) operation results in a loss of pipeline stability that is similar to a bar in compression; this phenomenon constitutes one of the key factors affecting pipeline integrity and design. To intuitively study the buckling response, a test system was designed that can account for thermal loading and pipe-soil interactions, and this system was used to perform a series of small-scale model tests on the lateral buckling of submarine pipelines with different initial imperfections. Based on the hat-shaped buckling profiles of the test pipelines, a new buckling mode called "hat-shaped buckling" was proposed. In an attempt to study the conditions under which the pipeline exhibits this hat-shaped buckling mode, the changing law of the buckling mode was investigated through finite element analyses of pipelines with different parameters, including the length of the pipeline and the amplitude and wavelength of the initial imperfection. Subsequently, an analytical solution for calculating the buckling amplitude of a pipeline with a hat-shaped buckling profile was proposed. The theoretical solution was compared to the experimental data, which verified the feasibility of the model in calculating pipeline buckling deformation. The experimental data, the buckling mode based on these data and the corresponding analytical model discussed herein may provide a reference for future experimental studies of pipeline buckling.  相似文献   

19.
The application of non-metallic light weight pipeline (LWP) in subsea oil/gas transmission system is subject to subsea pipeline on-bottom stability problem because of their light weight. Additional weight required for the stabilization of subsea LWP is a critical item to consider when decreasing the cost of the pipeline system. This paper presents an effective approach to determine the additional weight by utilizing a reliability-based assessment of subsea LWP against on-bottom stability. In the approach, a dynamic non-linear finite element model (FEM), including a model of fluids-pipe-soil interaction for the subsea pipeline, is used to study the pipeline displacement response. In-place analysis of a flexible pipe is presented as an example of the authors' methodology. Results show that displacements are largely affected with and without considering the lift force. Additionally, the uncertainties of all parameters used in the model are considered. With 145 cases of FEM calculations being the samples, a response surface model (RSM) is developed to predict the pipeline lateral displacement using the software Design-Expert. Combing with the RSM equation, the Monte Carlo simulation method is employed to estimate the probability of exceeding pipeline stability. To calculate the reliability of LWP for different submerged weights, the method introduces a calibrated factor into the serviceability limit state (SLS) function. The proposed approach can be used to determine the additional weight required for the on-bottom stability of subsea pipelines while considering the uncertainties of all relevant parameters.  相似文献   

20.
In this study, we propose a method for estimating the amount of expansion that occurs in subsea pipelines, which could be applied in the design of robust structures that transport oil and gas from offshore wells. We begin with a literature review and general discussion of existing estimation methods and terminologies with respect to subsea pipelines. Due to the effects of high pressure and high temperature, the production of fluid from offshore wells is typically caused by physical deformation of subsea structures, e.g., expansion and contraction during the transportation process. In severe cases, vertical and lateral buckling occurs, which causes a significant negative impact on structural safety, and which is related to on-bottom stability, free-span, structural collapse, and many other factors. In addition, these factors may affect the production rate with respect to flow assurance, wax, and hydration, to name a few. In this study, we developed a simple and efficient method for generating a reliable pipe expansion design in the early stage, which can lead to savings in both cost and computation time. As such, in this paper, we propose an applicable diagram, which we call the standard dimensionless ratio (SDR) versus virtual anchor length (LA) diagram, that utilizes an efficient procedure for estimating subsea pipeline expansion based on applied reliable scenarios. With this user guideline, offshore pipeline structural designers can reliably determine the amount of subsea pipeline expansion and the obtained results will also be useful for the installation, design, and maintenance of the subsea pipeline.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号