首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Multihull ships are widely used for sea transportation, and those with four hulls are known as quadramarans. Hull position configurations of a quadramaran include the diamond, tetra, and slice. In general, multihull vessels traveling at high speeds have better hydrodynamic efficiency than monohull ships. This study aims to identify possible effects of various quadramaran hull position configurations on ship resistance for hull dimensions of 2 m length, 0.21 m breadth, and 0.045 m thickness. We conducted a towing test in which we varied the hull spacing and speed at Fr values between 0.08 and 0.62 and measured the total resistance using a load cell transducer. The experimental results reveal that the lowest total resistance was achieved with a diamond quadramaran configuration at Fr = 0.1?0.6 and an effective interference factor of up to 0.35 with S/L = 3/10 and R/L = 1/2 at Fr = 0.62.  相似文献   

2.
The value of form factor k at different drafts is important in predicting full-scale total resistance and speed for different types of ships. In the ITTC community, most organizations predict form factor k using a low-speed model test. However, this method is problematic for ships with bulbous bows and transom. In this article, a Computational Fluid Dynamics (CFD)-based method is introduced to obtain k for different type of ships at different drafts, and a comparison is made between the CFD method and the model test. The results show that the CFD method produces reasonable k values. A grid generating method and turbulence model are briefly discussed in the context of obtaining a consistent k using CFD.  相似文献   

3.
In this paper, added resistances acting on a hull of non ballast water ship(NBS) in high waves is discussed. The non ballast water ships were developed at the laboratory of the authors at Osaka Prefecture University, Japan. In the present paper, the performances of three kinds of bow shapes developed for the NBS were theoretically and experimentally investigated to find the best one in high waves. In previous papers, an optimum bow shape for the NBS was developed in calm water and in moderated waves. For a 2 m model for experiments and computations, the wave height is 0.02 m. This means that the wave height is 15% of the draft of the ship in full load conditions. In this paper, added resistances in high waves up to 0.07 m for a 2 m model or 53% of the full load draft are investigated. In such high waves linear wave theories which have been used in the design stage of a ship for a long time may not work well anymore, and experiments are the only effective tool to predict the added resistance in high waves. With the computations for waves, the ship is in a fully captured condition because shorter waves, λ/Lpp0.6, are assumed.  相似文献   

4.
Resistance analysis is an important analytical method used to evaluate the hydrodynamic performance of High Speed Craft (HSC). Analysis of multihull resistance in shallow water is essential to the performance evaluation of any type of HSC. Ships operating in shallow water experience increases in resistance because of changes in pressure distribution and wave pattern. In this paper, the shallow water performance of an HSC design concept, the semi-Small Waterplane Area Twin Hull (semi-SWATH) form, is studied. The hull is installed with fin stabilizers to reduce dynamic motion effects, and the resistance components of the hull, hull trim condition, and maximum wave amplitude around the hull are determined via calm water resistance tests in shallow water. These criteria are important in analyzing semi-SWATH resistance in shallow water and its relation to flow around hull. The fore fin angle is fixed to zero degrees, while the aft fin angle is varied to 0°, 5°, 10°, and 15°. For each configuration, investigations are conducted with depth Froude numbers (Fr H ) ranging from 0.65 to 1.2, and the resistance tests are performed in shallow water at the towing tank of UTM. Analysis results indicate that the resistance, wave pattern, and trim of the semi-SWATH hull form are affected by the fin angle. The resistance is amplified whereas the trim and sinkage are reduced as the fin angle increases. Increases in fin angle contribute to seakeeping and stability but affect the hull resistance of HSCs.  相似文献   

5.
Ship resistance issues are related to fuel economy, speed, and cost efficiency. Air lubrication is a promising technique for lowering hull frictional resistance as it is supposed to modify the energy in the turbulent boundary layer and thereby reduce hull friction. In this paper, the objective is to identify the optimum type of air lubrication using microbubble drag reduction (MBDR) and air layer drag reduction (ALDR) techniques to reduce the resistance of a 56-m Indonesian self-propelled barge (SPB). A model with the following dimensions was constructed: length L?=?2000 mm, breadth B?=?521.60 mm, and draft T?=?52.50 mm. The ship model was towed using standard towing tank experimental parameters. The speed was varied over the Froude number range 0.11–0.31. The air layer flow rate was varied at 80, 85, and 90 standard liters per minute (SLPM) and the microbubble injection coefficient over the range 0.20–0.60. The results show that the ship model using the air layer had the highest drag reduction up to a maximum of 90%. Based on the characteristics of the SPB, which operates at low speed, the optimum air lubrication type to reduce resistance in this instance is ALDR.  相似文献   

6.
Submerged vanes are installed on rivers and channel beds to protect the outer bank bends from scouring. Also, local scouring occurs around the submerged vanes over time, and identifying the effective factors on the scouring phenomena around these submerged vanes is one of the important issues in river engineering. The most important aim of this study is investigation of scour pattern around submerged vanes located in 180° bend experimentally and numerically. Firstly, the effects of various parameters such as the Froude number (Fr), angle of submerged vanes to the flow (α), angle of submerged vane location in the bend (θ), distance between submerged vanes (d), height (H), and length (L) of the vanes on the dimensionless volume of the scour hole were experimentally studied. The submerged vanes were installed on a 180° bend whose central radius and channel width were 2.8 and 0.6 m, respectively. By reducing the Froude number, the scour hole volume decreased. For all Froude numbers, the biggest scour hole formed at θ?=?15°. In all models, by increasing the Froude number, the scour hole volume significantly increases. In addition, by increasing the submerged vanes’ length and height, the scour hole dimensions also grow. Secondly, using gene expression programming (GEP), a relationship for determining the scour hole volume around the submerged vanes was provided. For this model, the determination coefficients (R2) for the training and test modes were computed as 0.91 and 0.9, respectively. In addition, this study performed partial derivative sensitivity analysis (PDSA). According to the results, the PDSA was calculated as positive for all input variables.  相似文献   

7.
This study examines the hydrodynamic performance of multiple-row vertical slotted breakwaters. We developed a mathematical model based on an eigenfunction expansion method and a least squares technique for Stokes second-order waves. The numerical results obtained for limiting cases of double-row and triple-row walls are in good agreement with results of previous studies and experimental results. Comparisons with experimental measurements of the reflection, transmission, and dissipation coefficients (C R , C T , and C E ) for double-row walls show that the proposed mathematical model adequately reproduces most of the important features. We found that for double-row walls, the C R increases with increasing wave number, kd, and with a decreasing permeable wall part, dm. The C T follows the opposite trend. The C E slowly increases with an increasing kd for lower kd values, reaches a maximum, and then decreases again. In addition, an increasing porosity of dm would significantly decrease the C R , while increasing the C T . At lower values of kd, a decreasing porosity increases the C E , but for high values of kd, a decreasing porosity reduces the C E . The numerical results indicate that, for triple-row walls, the effect of the arrangement of the chamber widths on hydrodynamic characteristics is not significant, except when kd<0.5. Double-row slotted breakwaters may exhibit a good wave-absorbing performance at kd>0.5, where by the horizontal wave force may be smaller than that of a single wall. On the other hand, the difference between double-row and triple-row vertical slotted breakwaters is marginal.  相似文献   

8.
We investigated the difference in fatigue behaviour between the aluminium alloys A5083-O and A5083-H321, which are used as structural components in ships and high speed craft. We obtained S–N curves for the base materials and the welded joints made of A5083-O. The relationships between the fatigue crack propagation rates and the stress intensity factor ranges ΔK, ΔK eff and ΔK RPG (Toyosada et al. in Int J Fatigue 26(9):983–992, 2004) were determined. Additionally, the evolution of fatigue crack growth for the base materials and the welded joints made of A5083-O was measured. We also carried out numerical simulations of fatigue crack growth for both base metals and their welded joints made of A5083-O. The difference in fatigue crack growth behaviour for each alloy and the validity of the numerical simulations of fatigue crack growth based on the RPG stress criterion (Toyosada et al. 2004) in the base materials and their welded joints was investigated.  相似文献   

9.
A computational method for improving hull form in shallow water with respect to wave resistance is presented. The method involves coupling ideas from two distinct research fields: numerical ship hydrodynamics and nonlinear programming techniques. The wave resistance is estimated by means of Morinos panel method, which is extended to free surface flow and considers the influence of finite depth on the wave resistance of ships. This is linked to the optimization procedure of the sequential quadratic programming (SQP) technique, and an optimum hull form can be obtained through a series of iterations giving some design constraints. Sinkage is an important factor in shallow water, and this method considers sinkage as a hydrodynamic design constraint. The optimization procedure developed is demonstrated by selecting a Wigley (C B = 0.444) hull and the Series 60 (C B = 0.60) hull, and new hull forms are obtained at Froude number 0.316. The Froude number specified corresponds to a lower than critical speed since most of the ships operating in shallow water move below their critical speed. The numerical results of the optimization procedure indicate that the optimized hull forms yields a reduction in wave resistance.  相似文献   

10.
The aim of this study is to calculate hydrodynamic performance and ventilation flow around wedge, 2D blade and 3D surface piercing propeller (SPP), using computational fluid dynamic based on Reynolds-averaged Navier–Stokes method. First, numerical analyses for two-phase fluid flow around the wedge and 2D blade section (cupped and non-cupped) are presented. Flow ventilation, pressure distribution and forces are determined and compared with experimental data. Then, the method is extended to predict the hydrodynamic performance of propeller SPP-841B. The propeller exhibits a cupped blade. In the simulated configuration, SPP is one-third submerged (I = h/D = 0.33) and is working at various loadings with full ventilation occurring at low advance coefficient (J). The open water performance, pressure distribution, forces/moments and ventilation pattern on the SPP-841B model are obtained and compared with experimental data. The numerical results are in good agreement with experimental measurements, especially at high advance coefficient.  相似文献   

11.
A set of experiments is carried out in a towing tank to study the effects of the curvature of perforated plates on the wave reflection coefficient (C r ). The curvature of a perforated plate can be changed by rotating a reference perforated plate aboutits origin according to the parabolic equation y=?x 2. A plunger-type wave maker is used to generate regular waves. The reflection coefficients are calculated using Goda and Suzuki’s (1976) method. The results are compared with those of vertical or sloped passive wave absorbers. The comparison shows that a perforated plate with a curved profile is highly efficient in terms of reducing the wave reflection coefficient. A correlation is established to estimate the reflection coefficient of curved perforated plates as a function of both flow and geometry characteristics.  相似文献   

12.
The application of multi-hull ship or trimaran vessel as a mode of transports in both river and sea environments have grown rapidly in recent years.Trimaran vessels are currently of interest for many new high speed ship projects due to the high levels of hydrodynamic efficiency that can be achieved,compared to the mono-hull and catamaran hull forms.The purpose of this study is to identify the possible effects of using an unsymmetrical trimaran ship model with configuration(S/L) 0.1-0.3 and R/L=0.1-0.2.Unsymmetrical trimaran ship model with main dimensions: L=2000mm,B=200 mm and T=45 mm.Experimental methods(towing tank) were performed in the study using speed variations at Froude number 0.1-0.6.The ship model was pulled by an electric motor whose speed could be varied and adjusted.The ship model resistance was measured precisely by using a load cell transducer.The comparison of ship resistance for each configuration with mono-hull was shown on the graph as a function of the total resistance coefficient and Froude number.The test results found that the effective drag reduction could be achieved up to 17% at Fr=0.35 with configuration S/L=0.1.  相似文献   

13.
The present review examines the research literature on Non-Technical Skills (NTS) used by ships’ bridge officers in connection with navigation. The aim of the study was to (i) identify the cognitive and interpersonal skills which have been the focus of previous studies and (ii) explore how the content of these skills has been described. Databases searched included Academic Search Premier, PsycINFO, Science Direct, and Web of Science. Nineteen studies were included in the review. Five NTS were identified: situation awareness (SA), decision-making (DM), workload management (WM), communication, and leadership. In addition to discussing each skill, the review raises four overarching issues with the present literature for the bridge domain: (1) Have all the relevant skills been subject to exploration? (2) Have the skills identified been explored in detail? (3) There seems to be an uneven distribution of research between cognitive and interpersonal skills. (4) There is little research into understanding the skills as a complete taxonomy. Knowledge on how the skills are linked and interplay with one another is incomplete. Overall, further research on all these aspects of NTS in the maritime domain could increase scientific understanding and contribute to bridge operational practice and to the further development and evaluation of NTS training such as Bridge Resource Management (BRM).  相似文献   

14.
Successful co-deposition of fine particulate matter within an Electroless Nickel-Phosphorous (ENi-P) matrix is dependent on various factors like bath composition, particle compatibility with metallic matrix, bath reactivity (pH), particle size and their distribution. ENi-P deposits incorporating Al2O3/Alumina in a disperse phase have varied effects on properties and attributes like surface roughness (Ra), microhardness, wear resistance, corrosion resistance and surface morphology of the deposits obtained. This paper experimentally investigates the effect of alumina (1.55 g/L) on Ra, microhardness, surface morphology, deposition rate, wettability, wear resistance and corrosion resistance of ENi-P-Al2O3 composite deposits on mild steel substrates at bath pH 5, 7 and 9. Study reveals that optimum deposit parameters and deposition rates are achieved with bath pH. However, not much study has been undertaken concerning composite deposits obtained from higher bath pH or basic bath. This is attributable to the fact that at higher bath pH or alkaline baths, the bath gets unstable and eventually degrades or decomposes, thereby resulting in sub optimal or poor deposition. Hence, experimental investigations carried out by preparing suitable baths, operating under optimum conditions, and enabling successful composite deposition in acidic and alkaline baths have revealed that there is a significant improvement in the above mentioned properties of the as-deposited composite deposits, as the pH is increased from pH 5 to pH 9. This aspect can therefore be advantageously utilized for preparing various marine components like fasteners, nuts, bolts, washers, pipes, cables, components having relative motion etc.  相似文献   

15.
The marine environmental condition, especially NaCl, has been identified as one of the major sources of contamination on the performance of open cathode Proton Exchange Membrane Fuel Cells (PEMFC) system, when the power source is based on fuel cells for marine applications like submarines, navy ships etc., In the present paper, we have studied the performance of PEMFCs under the marine environment for a longer duration and also the recovery mechanism of the PEMFC power pack after contamination. It has been observed that the NaCl is a major contaminant for PEMFC, compared to NO x and SO x , which are major contaminants for fuel cells operating in the land regions. We have observed a performance loss of 60 % in PEMFC, when operated for 48 h, due to poisoning of PEMFC by NaCl vapours. The recovery of the stack is attempted by repeated water washing on the cathode side of the fuel cell, presuming that the salts get deposited only on the surface of the electrodes and the performance is easily recoverable. The recovery mechanisms are analysed by constant-current discharging operation and by modified experimental methods and are reported here. The performance vagaries in fuel cells due to sea water contamination is also analysed by linear fit and it is found that the rate of power increment after water wash is higher than the rate of power increment, around 11.5 W/10?h compared to normal environmental conditions, which is 4.1 W/10?h.  相似文献   

16.
Ice-induced structural vibration generally decreases with an increase in structural width at the waterline. Definitions of wide/narrow ice-resistant conical structures, according to ice-induced vibration, are directly related to structure width, sea ice parameters, and clearing modes of broken ice. This paper proposes three clearing modes for broken ice against conical structures: complete clearing, temporary ice pile up, and ice pile up. In this paper, sea ice clearing modes and the formation requirements of dynamic ice force are analyzed to explore criteria determining wide/narrow ice-resistant conical structures. According to the direct measurement data of typical prototype structures, primary quantitative criterion of the ratio of a cone width at waterline (D) to sea ice thickness (h) is proposed. If the ratio is less than 30 (narrow conical structure), broken ice is completely cleared and a dynamic ice force is produced; however, if the ratio is larger than 50 (wide conical structure), the front stacking of broken ice or dynamic ice force will not occur.  相似文献   

17.
18.
This paper begins by providing a brief overview of the International Labour Organization’s Maritime Labour Convention, 2006 (MLC, 2006), noting that this Convention, often called the “Seafarers’ bill of rights”, seeks to achieve both social and labour rights (“decent work”) for seafarers and fair competition (achieving a level-playing field) for shipowners. It has been described as the “fourth pillar” of the international maritime regulatory regime complementing the major International Maritime Organization conventions. The paper provides a brief update on international efforts to achieve the 30/33 formula needed to bring the Convention into force [at present, the tonnage element, 33% has been achieved already with coverage now at 54% of the world fleet (by gross tonnage), with 18 ratifications]. It then explores challenges faced by flag States in connection with capacity to implement the ship inspection and certification system under the MLC, 2006 and other difficulties with respect to legal implementation by the flag States. The paper also comments on some challenges in connection with port State, coastal State and labour-supplying State responsibilities. The paper points out that the MLC, 2006 is a comprehensive code that covers diverse issues and a wider range of both ships and seafarers than previous conventions. It often requires interdepartmental cooperation to implement its requirements at the national level. The paper concludes that, despite the slower pace of ratification in some regions, largely because of the recent economic and other crises, it appears that many actors in the maritime sector are already actively engaged in MLC, 2006 implementation, often ahead of governments. The question is not “if” but “when” the formula will be achieved to allow the MLC, 2006 to enter into force.  相似文献   

19.
A simple formulation for predicting the ultimate strength of ships   总被引:11,自引:0,他引:11  
The aim of this study is to derive a simple analytical formula for predicting the ultimate collapse strength of a single- and double-hull ship under a vertical bending moment, and also to characterize the accuracy and applicability for earlier approximate formulations. It is known that a ship hull will reach the overall collapse state if both collapse of the compression flange and yielding of the tension flange occur. Side shells in the vicinity of the compression and the tension flanges will often fail also, but the material around the final neutral axis will remain in the elastic state. Based on this observation, a credible distribution of longitudinal stresses around the hull section at the overall collapse state is assumed, and an explicit analytical equation for calculating the hull ultimate strength is obtained. A comparison between the derived formula and existing expressions is made for largescale box girder models, a one-third-scale frigate hull model, and full-scale ship hulls.List of symbols A B total sectional area of outer bottom - A B total sectional area of inner bottom - A D total sectional area of deck - A S half-sectional area of all sides (including longitudinal bulkheads and inner sides) - a s sectional area of a longitudinal stiffener with effective plating - b breadth of plate between longitudinal stiffeners - D hull depth - D B height of double bottom - E Young's modulus - g neutral axis position above the base line in the sagging condition or below the deck in the hogging condition - H depth of hull section in linear elastic state - I s moment of inertia of a longitudinal stiffener with effective plating - l length of a longitudinal stiffener between transverse beams - M E elastic bending moment - M p fully plastic bending moment of hull section - M u ultimate bending moment capacity of hull section - M uh ,M us ultimate bending moment in hogging or sagging conditions - r radius of gyration of a longitudinal stiffener with effective plating [=(I s /a s )1/2] - t plate thickness - Z elastic section modulus at the compression flange - Z B ,Z D elastic section modulus at bottom or deck - slenderness ratio of plate between stiffeners [= (b/t)(y/E)1/2] - slenderness ratio of a longitudinal stiffener with effective plating [=(l/r)(y/E)1/2] - y yield strength of the material - yB , yB , yD yield strength of outer bottom, inner bottom - yS deck, or side - u ultimate buckling strength of the compression flange - uB , uB , uD ultimate buckling strength of outer bottom - uS inner bottom, deck, or side  相似文献   

20.
Contrary to natural cavitation, ventilated cavitation is controllable and is not harmful. It is particularly used to reduce the drag of the hydraulic vehicles. The ventilated cavitation is characterized by various gas regimes. The mechanisms of ventilated cavitation are investigated in the present work with CFD based on a 2D solver. The attention is especially focused on the transition between the reentrant jet and twin vortex regimes. The results confirm that the product of ventilated cavitation number and Froude number is lower than 1 (σcFr?<?1) in the twin vortex regime, while it is higher than 1 (σcFr?>?1) in the reentrant jet regime, as reported in the literature. Further analysis shows that ventilated cavitation is significantly influenced by the natural cavitation number.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号