首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 50 毫秒
1.
The marine shipping industry faces challenges to reduce engine exhaust emissions and greenhouse gases(GHGs) from ships, and in particular, carbon dioxide. International regulatory bodies such as the International Maritime Organization and National Environmental Agencies of many countries have issued rules and regulations to drastically reduce GHG and emissions emanating from marine sources. This study investigates the possibility of using natural gas and hydrogen as alternative fuels to diesel oil for marine gas turbines and uses a mathematical model to assess the effect of these alternative fuels on gas turbine thermodynamic performance. Results show that since natural gas is categorized as a hydrocarbon fuel, the thermodynamic performance of the gas turbine cycle using natural gas was close to that of the diesel case. However, the gas turbine thermal efficiency was found to be slightly lower for natural gas and hydrogen fuels compared to diesel fuel.  相似文献   

2.
Strong restrictions on emissions from marine power plants(particularly SOx,NOx)will probably be adopted in the near future.In this paper,a combined solid oxide fuel cell(SOFC)and steam turbine fuelled by natural gas is proposed as an attractive option to limit the environmental impact of the marine sector.The analyzed variant of the combined cycle includes a SOFC operated with natural gas fuel and a steam turbine with a single-pressure waste heat boiler.The calculations were performed for two types of tubular and planar SOFCs,each with an output power of 18 MW.This paper includes a detailed energy analysis of the combined system.Mass and energy balances are performed not only for the whole plant but also for each component in order to evaluate the thermal efficiency of the combined cycle.In addition,the effects of using natural gas as a fuel on the fuel cell voltage and performance are investigated.It has been found that a high overall efficiency approaching 60%may be achieved with an optimum configuration using the SOFC system.The hybrid system would also reduce emissions,fuel consumption,and improve the total system efficiency.  相似文献   

3.
In efforts to overcome an foreseeable energy crisis predicated on limited oil and gas supplies, reserves; economic variations facing the world, and of course the environmental side effects of fossil fuels, an urgent need for energy sources that provide sustainable, safe and economic supplies for the world is imperative. The current fossil fuel energy system must be improved to ensure a better and cleaner transportation future for the world. Despite the fact that the marine transportation sector consumes only 5% of global petroleum production; it is responsible for 15% of the world NO x and SO x emissions. These figures must be the engine that powers the scientific research worldwide to develop new solutions for a very old energy problem. In this paper, the most effective types of marine power plants were discussed. The history of the development of each type was presented first and the technical aspects were discussed second. Also, the fuel cells as a new type of power plants used in marine sector were briefed to give a complete overview of the past, present and future of the marine power plants development. Based on the increased worldwide concerns regarding harmful emissions, many researchers have introduced solutions to this problem, including the adoption of new cleaner fuels. This paper was guided using the same trend and by implementing the hydrogen as fuel for marine internal combustion engine, gas turbines, and fuel cells.  相似文献   

4.
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is. discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.  相似文献   

5.
Escalating apprehension about the harmful effects of widespread use of conventional fossil fuels in the marine field and in internal combustion engines in general, has led to a vast amount of efforts and the directing of large capital investment towards research and development of sustainable alternative energy sources. One of the most promising and abundant of these sources is hydrogen. Firstly, the use of current fossil fuels is discussed focusing on the emissions and economic sides to emphasize the need for a new, cleaner and renewable fuel with particular reference to hydrogen as a suitable possible alternative. Hydrogen properties, production and storage methods are then reviewed along with its suitability from the economical point of view. Finally, a cost analysis for the use of hydrogen in internal combustion engines is carried out to illustrate the benefits of its use as a replacement for diesel. The outcome of this cost analysis shows that 98% of the capital expenditure is consumed by the equipment, and 68.3% of the total cost of the equipment is spent on the solar photovoltaic cells. The hydrogen plant is classified as a large investment project because of its high initial cost which is about 1 billion US$; but this is justified because hydrogen is produced in a totally green way. When hydrogen is used as a fuel, no harmful emissions are obtained.  相似文献   

6.
由于船用发动机节能减排的需要,使用清洁能源作为替代燃料成为一个重要的发展方向。结合国内外针对氢-天然气-柴油(HND)三燃料发动机的研究,分析此类发动机燃烧性能和排放性能。增加氢气在混合燃料中的比例使得发动机缸内压力峰值提升,缸内温度增加,有助于提高发动机效率和机动性;一氧化碳、二氧化碳、总碳氢排放随氢气比例的升高而减少;氮氧化物排放有所增加;颗粒物排放显著减少。随着氢能源战略的发展,船用HND三燃料发动机在未来有望得到商业化推广应用。  相似文献   

7.
One of the basic ways to reduce polluting emissions of ship power plants is application of innovative devices for on-board energy generation by means of secondary energy resources. The combined gas turbine and diesel engine plant with thermochemical recuperation of the heat of secondary energy resources has been considered. It is suggested to conduct the study with the help of mathematical modeling methods. The model takes into account basic physical correlations, material and thermal balances, phase equilibrium, and heat and mass transfer processes. The paper provides the results of mathematical modeling of the processes in a gas turbine and diesel engine power plant with thermochemical recuperation of the gas turbine exhaust gas heat by converting a hydrocarbon fuel. In such a plant, it is possible to reduce the specific fuel consumption of the diesel engine by 20%. The waste heat potential in a gas turbine can provide efficient hydrocarbon fuel conversion at the ratio of powers of the diesel and gas turbine engines being up to 6. When the diesel engine and gas turbine operate simultaneously with the use of the LNG vapor conversion products, the efficiency coefficient of the plant increases by 4%–5%.  相似文献   

8.
降低船舶柴油机NOx排放措施研究   总被引:3,自引:0,他引:3  
廖建彬  蔡振雄 《机电设备》2006,23(4):5-8,22
船舶柴油机尾气中含有大量NOx,严重破坏生态环境.随着IMO和各港口国对NOx的排放限制日趋严格,如何更加有效地减少甚至消除船舶柴油机尾气中的NOx排放值得深入研究.该文在介绍了NOx的产生机理的基础上着重阐述与分析了几种处理NOx较为有效的措施.  相似文献   

9.
控制船机废气排放的绿色水运技术分析   总被引:1,自引:0,他引:1  
高炳  赵自奇 《船舶》2014,(5):17-23
文章分析了水路运输船舶柴油机废气排放对大气的污染,介绍了国际海事组织相关公约对船机排放的控制要求,讨论了业界重点关注的船机废气排放控制技术、温室气体排放等热点问题、以及国内外法规与鼓励措施等。文中还提出进一步完善控制船机废气排放的措施和思路,以期推进水路运输节能减排重大关键技术、先进适用技术与产品的研发与推广,促进绿色水运可持续发展。  相似文献   

10.
随着排放法规的日趋严苛和运输市场竞争日益激烈,为降低航运业运营成本、保护环境,船舶发动机燃油系统不断被改进,双燃料发动机以其污染更少、燃料价格较低, 成为研究热点。本文介绍了一种新的船用柴油天然气双燃料系统,并为系统设计了性能可靠控气精准的组合喷射阀。为了提高系统适应性,设计了通过T-S模糊控制算法处理油耗和转速信息得出系统的天然气喷入量的控制系统,不安装限油装置,最大限度地利用了原柴油机的控制系统,通过发动机自身调节机构对引燃柴油量调节,安装简单方便。在台架实验中,双燃料发动机的替代率随着转速的升高逐渐增大,在额定转速(负荷)点工作时,替代率达到了73%,费用节省率达到了31%,运行可靠稳定。  相似文献   

11.
GT28燃气轮机工业/船用衍生的技术策略研究   总被引:1,自引:1,他引:0  
GT28燃气轮机是1台带动力涡轮的三轴燃气轮机,性能良好。通过对其工业/船用衍生应用与发展研究策略的分析,全面勾画出其技术发展网络及主要关键技术,明晰其应用和发展技术途径,提出当前应重点开展燃气轮机发电模块(船用/陆用)、天然气增压机组、间冷循环燃气轮机的应用与发展研究工作。在此基础上将会全面推进GT28燃气轮机的工业/船用衍生应用与发展。  相似文献   

12.
李碧桃 《中国修船》2011,24(6):8-10
重油价格低廉,渔船柴油机燃用重油可大大降低船舶营运成本,但由于重油的粘度大,在喷油时无法正常雾化而影响柴油机正常运行,因此,对渔船中速柴油机燃用的重油,必须设置加热设备对重油加热进行降低粘度的自动控制,文章介绍渔船燃用重油时其粘度控制的一种方法及其系统,即采用主机排出的废气加热低温淡水,而产生的热水送入电锅炉,电锅炉产生的蒸汽用于加热重油,同时实现了废热回收利用。  相似文献   

13.
节能减排环保背景下的船用双燃料柴油机发展研究   总被引:1,自引:1,他引:0  
刘西全 《船舶工程》2014,36(5):10-13
船用天然气/柴油双燃料柴油机是一种具有良好发展前景的节能减排环保船用动力设备。从船用双燃料柴油机发展的时代背景,发展趋势及天然气燃料的优势,包括国内外船用柴油机发展趋势、船用双燃料柴油机的发展前景、船用天然气燃料的优势;船用双燃料柴油机及其子系统研究;船用双燃料柴油机的国内发展现状等方面,对节能减排环保背景下的船用双燃料柴油机发展进行了研究。  相似文献   

14.
This paper presents a simulator model of a marine diesel engine based on physical, semi-physical, mathematical and thermodynamic equations, which allows fast predictive simulations. The whole engine system is divided into several functional blocks: cooling, lubrication, air, injection, combustion and emissions. The sub-models and dynamic characteristics of individual blocks are established according to engine working principles equations and experimental data collected from a marine diesel engine test bench for SIMB Company under the reference 6M26SRP1. The overall engine system dynamics is expressed as a set of simultaneous algebraic and differential equations using sub-blocks and S-Functions of Matlab/Simulink. The simulation of this model, implemented on Matlab/Simulink has been validated and can be used to obtain engine performance, pressure, temperature, efficiency, heat release, crank angle, fuel rate, emissions at different sub-blocks. The simulator will be used, in future work, to study the engine performance in faulty conditions, and can be used to assist marine engineers in fault diagnosis and estimation(FDI) as well as designers to predict the behavior of the cooling system, lubrication system, injection system, combustion, emissions, in order to optimize the dimensions of different components. This program is a platform for fault simulator, to investigate the impact on sub-blocks engine’s output of changing values for faults parameters such as: faulty fuel injector, leaky cylinder, worn fuel pump, broken piston rings, a dirty turbocharger, dirty air filter, dirty air cooler, air leakage, water leakage, oil leakage and contamination, fouling of heat exchanger, pumps wear, failure of injectors(and many others).  相似文献   

15.
针对6L190柴油/天然气双燃料发动机,采用天然气分段气态直喷的喷射规律,通过改变其主预喷间隔与预喷量,利用AVL Fire软件对缸内燃烧及排放进行数值模拟研究。结果表明:天然气预喷射能够改善混合气形成质量,缩短主喷射着火滞燃期,降低缸内最大爆发压力和最高燃烧温度,减少NOX排放,优化燃烧,但若要达到良好的预喷射效果,这需要对预喷量和主预喷间隔进行优化调整。间隔角较大时,宜采用较大预喷量;间隔角较小时,预喷量宜减少;间隔角不宜过小,否则效果会适得其反。预喷量固定时,较大的间隔角有利于改善排放;预喷量较小时,排放对间隔角变化相对不敏感。  相似文献   

16.
在开发一款机车柴油机过程中,利用AVL BOOST软件对柴油机工作过程进行了仿真计算,计算了不同米勒强度和不同喷油正时条件下柴油机的性能参数。根据计算结果,排除了弱米勒的方案。针对强米勒和中米勒,开展了试验研究,通过调整喷油定时、增压压力设定、共轨喷射压力,进行了多方案试验研究,试验结果表明,强米勒方案虽然可以有效降低Nox排放,但是带来PM排放升高和涡轮前排气温度升高的问题,中米勒虽然降低Nox排放的效果弱于强米勒,但是能获得比较满意的PM排放,且涡轮前排气温度远低于强米勒,综合各方面性能参数的比较结果,在满足排放要求的前提下,中米勒为优选方案。  相似文献   

17.
掺水乳化油对船舶柴油机燃烧和排放的影响   总被引:1,自引:1,他引:0  
应用AVL-FIRE软件对使用不同掺水量乳化油燃料的船舶柴油机进行了多维数值模拟研究,对比分析了缸内压力、放热率、缸内平均温度、NOX和碳烟排放浓度,并且得到了缸内温度场、NOX和碳烟浓度场。结果表明,计算燃烧缸内压力曲线与试验缸内压力曲线具有较好的一致性,验证了模型的准确性。通过比较可知,掺水乳化油会使滞燃期延长,在燃烧过程中由于水蒸发吸热,降低了燃烧温度,并且发生水煤气反应,有效地减少了污染物排放。仿真结果表明,使用5%~10%掺水乳化油做为燃料,使NOX排放量减小43.9%~67.7%。  相似文献   

18.
张晓荣  李博洋 《中国航海》2020,(1):83-87,105
以17万m^3液化天然气(Liquefied Natural Gas,LNG)运输船为母型船,选取LM2500燃气轮机为主动力装置,联合蒸汽轮机和2台W?rtsil?12V34DF双燃料柴油机,设计出一套燃-蒸-柴联合循环动力系统。利用Aspen HYSYS软件模拟系统流程,经模拟与分析计算,该系统的设计方案合理可行,并得出燃气轮机负荷下的燃气轮机发电效率及其输出效率、燃蒸联合发电效率及其系统输出效率,各系统参数随燃气轮机负荷的增大呈现不同幅度的增大。将该系统的系统输出效率与柴油机的动力系统输出效率进行对比分析,结果表明:在理想工况下,两种系统的系统输出效率相当;在定速工况下,该系统的系统输出效率与柴油机的系统输出效率相比略低,而燃气轮机的NOx、SOx排放量较小,满足新公约要求。因此,该系统有很好的船舶实际应用价值。  相似文献   

19.
为研究运行参数对天然气-柴油双燃料船用发动机燃烧和排放的影响,运用AVL_FIRE仿真软件基于4190Z_LC-2型船用中速柴油机,构建燃烧室高压循环模型。通过将仿真数据和台架试验得到的缸压曲线进行对比,验证模型的准确性。采用模型仿真,研究运行参数对燃烧和排放性能的影响。结果表明:天然气替代率可以明显改善NO的排放,过高的替代率会降低指示功率,损失部分动力性;提高进气温度可改善燃烧质量,合适的进气温度可以改善动力性和经济性;提高进气压力有增压效果,适当提高进气压力可获得较好的动力性和排放性;喷油提前角的增大,会延长滞燃期,缩短后燃期,而合适的喷油提前角可以避免工作粗暴,改善柴油机动力性。  相似文献   

20.
伴随着排放法规的不断升级,大缸径船用柴油机面临经济性和排放性升级的双重考验,因而对其油气混合过程和燃烧系统匹配优化的需求更加紧迫。文章采用仿真研究的方式,建立某200缸径船用柴油机的燃烧系统三维模型,研究其喷油规律、喷油器流量、夹角及燃烧室形状等参数对燃烧性能的影响,并以此为基础提出改进方案。实验结果表明,仿真优化方案实现了油耗原机基础上降低4.6%、烟度降低53%,极大地改善了产品性能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号