首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Vibration control is gaining focuses in the field of offshore wind turbines (OWTs) in recent years as the turbine tower becomes taller and more slender. Although a number of research works have been carried out to control the OWT vibrations, using tuned mass damper (TMD) and multiple tuned mass dampers (MTMDs) to control the jacket–type OWT vibrations is rarely reported, especially for the MTMDs, of which the application in the field of OWTs is still in the initial stage. This study focuses on the performance of TMD and MTMDs in controlling the tower vibrations of the jacket–type OWT subjected to the combined wind, wave and current loads, which are the most common external vibration resources for OWTs. The control effectiveness is numerically investigated and evaluated by the reductions of the standard deviation displacement (σ(d)) and the standard deviation acceleration (σ(a)) of the tower top. After the installation of TMD, σ(d) and σ(a) are reduced by 32% and 29% respectively. Larger TMD mass ratios lead to better control effectiveness, but the improvement becomes less obvious as the mass ratios constantly increase. The control effectiveness of the MTMD system is slightly decreased compared with a single large TMD. However, the robustness of MTMDs is superior since the OWT vibrations can still be controlled effectively even if some TMDs do not function. The control effectiveness of the MTMD system can also be affected by the change in the positions of malfunctioned TMDs.  相似文献   

2.
韩超帅  马永亮  曲先强  张猛 《船舶力学》2017,21(12):1527-1539
文章提出一种基于等效疲劳载荷的快速有效的结构优化设计方法,首先通过bladed模拟得到时域下的风载荷,然后通过雨流计数法则和等效损伤理论得到相应的疲劳载荷谱和等效疲劳载荷,接着以导管架式海上风机为例,利用AN-SYS对其进行三维建模,选取三种典型管节点和两种非管节点,基于热点应力法计算了其在三种风疲劳载荷作用下的疲劳损伤,通过比较三种载荷作用下的疲劳损伤结果,验证了等效疲劳载荷的可靠性.接着又计算了各等效疲劳载荷分量单独作用下的海上风机焊接节点的疲劳损伤,得出各疲劳载荷分量对疲劳总损伤的贡献,可以为设计者提供更好的载荷设计依据.相比于传统的时域疲劳分析方法和疲劳载荷谱方法,等效疲劳载荷方法更加方便有效.  相似文献   

3.
Long term time domain analysis of the nominal stress for fatigue assessment of the tower and platform members of a three-column semi-submersible was performed by fully coupled time domain analyses in Simo-Riflex-AeroDyn. By combining the nominal stress ranges with stress concentration factors, hot spot stresses for fatigue damage calculation can be obtained. The aim of the study was to investigate the necessary simulation duration, number of random realisations and bin sizes for the discretisation of the joint wind and wave distribution. A total of 2316 3-h time domain simulations, were performed.In mild sea states with wind speeds between 7 and 9 m/s, the tower and pontoon experienced high fatigue damage due to resonance in the first bending frequency of the tower from the tower wake blade passing frequency (3P).Important fatigue effects seemed to be captured by 1 h simulations, and the sensitivity to number of random realisations was low when running simulations of more than 1 h. Fatigue damage for the tower base converged faster with simulation duration and number of random realisations than it did for the platform members.Bin sizes of 2 m/s for wind, 1 s for wave periods and 1 m for wave heights seemed to give acceptable estimates of total fatigue damage. It is, however, important that wind speeds that give coinciding 3P and tower resonance are included and that wave periods that give the largest pitch motion are included in the analysis.  相似文献   

4.
船体固有频率与遭遇波浪频率及其倍频相接近时,波浪载荷极易引起船体结构产生持续的波激振动现象,对大型船舶结构疲劳损伤的影响达到40 %以上。因此,有必要针对波激振动引起的非线性垂向弯矩载荷特点,开展高低频复合工况下典型切口试件疲劳试验及累计损伤分析研究。基于非线性随机载荷的分析方法,采用闭合雨流计数法提取叠加应力历程中的多级循环载荷,并结合平均应力修正方法和疲劳极限以下SN曲线局部修正法,对叠加应力历程中小载荷的损伤效应展开研究。分析结果表明,高低频载荷叠加产生的附加损伤效应对疲劳寿命的影响显著,在恒定应力比下随平均应力的变化近似成二次函数关系。考虑高频小载荷的叠加应力历程疲劳寿命明显降低,可以通过修正累计损伤临界值或引入应力放大因子,近似的利用线性累积损伤理论预测实际叠加应力历程的寿命范围。  相似文献   

5.
对海上风机支撑结构进行动力响应分析,求出结构危险节点的载荷谱和功率谱密度函数,结合疲劳损伤模型和Dirlik概率模型,分别在时域和频域内对支撑结构进行疲劳寿命分析.由于时域法计算疲劳寿命需进行应力循环计数,这一过程需处理的数据庞大,耗时长.频域法省去应力循环计数,代之以概率密度函数,可相对准确、快速地计算结构的疲劳寿命.分析结果表明,采用Dirlik概率模型的频域分析法能较准确地反映海上风机支撑结构在随机载荷作用下的疲劳损伤情况,计算结果误差在可接受范围内.  相似文献   

6.
杨永春  李响亮  刘坤宁  孙磊 《船舶工程》2014,36(S1):235-238
基于对TMD减振原理,针对海上风力发电塔架结构特点,将TMD减振技术应用于海上风力发电塔架中。在仿真计算时,将软件模拟的风机对塔架的作用力时程施加在塔架模型中,在考虑浪流荷载作用下研究了TMD对风力发电塔架的减振效果。结果表明TMD结构对塔架的振动能够起到良好的减振作用。  相似文献   

7.
The dynamic characteristics of offshore wind turbines are heavily affected by environmental loads from wave and wind action and nonlinear soil behaviour. In the design of the monopile structures, the fatigue load due to wind and wave loading is one of the most important problems to consider. Since the fatigue damage is sensitive to the foundation stiffness and damping, increasing the accuracy of analysis tools used in the design and optimization process can improve the reliability of the structure and reduce conservatism, thereby leading to a more cost-efficient design. In this context, analysis of field data is important for calibrating and verifying purposes. This paper presents analysis of measured accelerations and strains from a wind farm in the North Sea with monopile foundations. Field data during idling conditions, collected over long periods of operation, are analysed and the natural frequencies are determined, and damping is estimated. The measured natural frequencies are compared to calculated values using an aero-servo-hydro-elastic code, showing a good agreement in the frequency range below 2 Hz. Variation of the natural frequencies with intensity of loading may indicate effect of soil nonlinearity on the overall OWT response. Since the first natural bending modes have the largest potential to mobilize soil reactions, they are of primary interest in this context. The effect of load (wave, wind and dynamic bending moment) on the first natural frequency is investigated using different analysis techniques in the frequency domain and time domain. A clear correlation between load level and first natural frequency is demonstrated. A simple nonlinear SSI model of the tower/soil system is employed to numerically investigate the observed changes in the measured first natural frequency with the level of loading and increased overall damping. The simulated results reproduce the general trends in the observed reduction in the first natural frequency and increased damping ratio with the load level. However, the effect of the load level is less than that observed in the measurements, indicating contribution also from other factors than soil nonlinearity.  相似文献   

8.
提出了改进的FASS(Fatigue Assessment of Ship Structures)评估系统,使之适用于液化石油LPG,Liquified Petroleum Gas)船船体结构的疲劳寿命校核。该系统从疲劳分析的基本原理出发,以疲劳累积损伤度公式为理论基础,可对船体结构进行疲劳寿命校核。通过对16500m^3LPG船的验算,表明改进后的方法能有效评估LPG船舶体结构的疲劳寿命。  相似文献   

9.
The three-planar tubular Y-joint (3Y-joint) is the main part of the fatigue assessment of tripod substructures of offshore wind turbines (OWTs). As typical multiplanar tubular joints, 3Y-joints are affected a lot by multiplanar interaction between braces. Moreover, the locations of hot spot stress (HSS) can vary considerably under different load types. Thus, the distributions of stress concentration factor (SCF) and multiplanar interaction factor (MIF) along weld toe curves are necessary to calculate HSS. Considering these requirements, this study focuses on the 3Y-joint considering the wide application of the tripod substructure of OWT. A finite element (FE) analysis method is introduced and validated. Then, a numerical database is established covering common ranges of parameters used in practice. The SCF and MIF of 3Y-joint under in-plane bending moment are analyzed. Distribution formulas are proposed and proved suitable for calculating HSS in engineering design.  相似文献   

10.
A linearized aero-hydro-servo-elastic floating wind turbine model is presented and used to perform integrated design optimization of the platform, tower, mooring system, and blade-pitch controller for a 10 MW spar floating wind turbine. Optimal design solutions are found using gradient-based optimization with analytic derivatives, considering both fatigue and extreme response constraints, where the objective function is a weighted combination of system cost and power quality. Optimization results show that local minima exist both in the soft-stiff and stiff-stiff range for the first tower bending mode and that a stiff-stiff tower design is needed to reach a solution that satisfies the fatigue constraints. The optimized platform has a relatively small diameter in the wave zone to limit the wave loads on the structure and an hourglass shape far below the waterline. The shape increases the restoring moment and natural frequency in pitch, which leads to improved behaviour in the low-frequency range. The importance of integrated optimization is shown in the solutions for the tower and blade-pitch control system, which are clearly affected by the simultaneous design of the platform. State-of-the-art nonlinear time-domain analyses show that the linearized model is conservative in general, but reasonably accurate in capturing trends, suggesting that the presented methodology is suitable for preliminary integrated design calculations.  相似文献   

11.
钟晨  周佳  杨辉 《船舶》2015,(3):52-56
半潜式起重铺管船由上平台中若干立柱和横撑以及两个下浮体组成。工作和运营时的结构受力十分复杂,文中采用直接计算方法,对各种典型工况进行有限元计算,对半潜式起重铺管船总强度载荷模式,主要载荷传递路径和结构设计关键区域进行分析和论述。  相似文献   

12.
研究了结构SDOF-MTMD系统在随机激励下的响应,应用谱分析方法优化了MT-MD参数,从工程应用实际出给出了其设计方法,数值分析表明,在相同质量比下MTMD的减效果优于单个TMD。  相似文献   

13.
嵇春艳  于雯  黄山  张健 《船舶力学》2015,(5):566-573
文章基于逐步破坏分析法和有限元计算方法,发展了一种计及材料腐蚀、疲劳裂纹等结构损伤的半潜式海洋平台关键结构全寿期极限强度计算方法。以一服役水深为3000 m半潜式平台为研究对象,选取横撑和立柱局部结构作为研究对象,以不同服役年限下裂纹扩展长度和腐蚀厚度作为变化参数,采用ANSYS软件建立其参数化有限元模型,计算了不同服役年限下半潜式海洋平台关键结构极限强度,在此基础上分析了全寿期内关键结构极限强度随服役年限的变化规律。  相似文献   

14.
根据碎石桩施工平台各运行工况及载荷谱,用ANSYS Workbench15.0软件获得升降液压缸所受应力、变形、疲劳寿命及安全系数的仿真数据。结果表明,升降液压缸在20年设计寿命内具有足够的静强度,且在12年共经历1 200个周期循环载荷的作用下,该升降液压缸具有足够的疲劳强度,而在随后8年(累积2000个周期循环载荷)的运行过程中,升降液压缸极有可能发生疲劳破坏。上述分析方法与结果可为升降液压缸的结构改进、预期维修以及其他液压缸的性能分析提供参考依据。  相似文献   

15.
渤海某FPSO的单点系泊装置固定塔架由导管架、将军柱和上部组块构成,其中将军柱是系泊力的主要承受构件之一,其结构安全至关重要。由于系泊力是典型的交变载荷,作用在结构上会产生疲劳损伤,因此有必要对将军柱进行在位期间的疲劳分析。本文提出一种长期海况下海上固定装置疲劳计算方法,通过AQWA软件建立单点系泊系统的多体耦合水动力模型模型,根据渤海的海况环境资料计算出FPSO运动时域内所受到的的系泊力;基于S-N曲线方法与Miner线性累计损伤理论,通过nCode Designlife疲劳计算软件计算将军柱结构的疲劳寿命和管节点的疲劳损伤;评估结构的疲劳强度,分析易发生疲劳的关键节点位置,并给出增加管节点疲劳寿命的建议及设计方法,为相同类型的海上固定式结构物的结构设计及疲劳分析提供有益的参考及借鉴。  相似文献   

16.
依据累积疲劳损伤法-迈纳(Miner)法和应力寿命曲线(S-N)推导变幅多级载荷下等效应力及强度判据公式;结合ANSYS有限元分析软件和柯顿-多兰(Certon-Dolan)理论,通过APDL(Ansys Pa- rameter Design Language)参数化建模,分析出不同载荷下应力集中的部位,将有限元网格划分的危险部位节点单元的应力值取出,代入理论公式估算疲劳寿命,具体分析多级载荷加载次序对疲劳寿命的影响,比较Miner方法和Certon-Dolan方法优劣,并提供设计参考数据和理论判据。  相似文献   

17.
For offshore structures such as offshore wind turbines (OWT), typhoon is usually considered one of the most critical threats to structural safety performances and service life due to its heavy wind, wave, and even coexisted storm surge. Meanwhile, it is challenging to obtain the systematic data from the environmental conditions, structural dynamic vibrations and the SCADA record, when typhoon passes by the offshore wind farm. Taking into account these situations, a real-time multi-source monitoring system enabling the investigation of the typhoon impact on the performances of OWT, has been firstly established and implemented to a 4.0 MW mono-pile OWT in Rudong, Jiangsu, China. One of the major contributions in this work is to develop the monitoring system using a unique environment of real-world data that has been synchronously obtained from waves, winds, vibrational accelerations, inclinations of towers and SCADA data during the typhoon “In-fa” passing by the wind farm, and provide the scientific community with the underlying standards and technical recommendations. To investigate the influence caused by “In-fa”, comparison results of the measured data in the range of June to August have been analysed. It is worth noting that two conclusions have been obtained: (1) the region near the nacelle is not always the most critical vibrational area. Actually, the change of the maximum structural response in the position under different external loads should be applied to effectively evaluate the structural safety; (2) the measured accelerations exhibit an obvious decay process in the presence of the turbine rotor-stop, but not the yaw rigid-body motion. This observation promotes the accurate identification of modal parameters for the long-term monitoring. Consequently, these valuable findings to facilitate the assessment of structural operational conditions have been developed into two guide-lines. All the data and analyses presented in this paper provide a valuable insight into the design, energy efficiency, safety monitoring and damage diagnosis of OWT structures.  相似文献   

18.
The fatigue behaviour of longitudinal stiffeners of oil tankers and container ships, subjected to dynamic loads, is analysed. The following dynamic load components are considered: hull girder vertical wave bending moment, alone and combined with the horizontal wave bending moment, hydrodynamic pressure and inertial forces caused by cargo acceleration.

The spectral method was selected to calculate the fatigue damage, based on S—N curves and Miner's rule. Following this approach, the fatigue damage may be calculated as a function of a stress parameter Ωp, which represents the cumulative effect of wave induced loads in the unit of time and incorporates the combined effects of stress level and its occurring frequency.

Simple formulas for Ωp of oil tankers and container ships are given, obtained from the results of hydrodynamic analyses performed on several ships, in different wave environments.

Several examples show the applicability of the methods to real ship structures. The method, however, still needs to be calibrated because of the simplifying hypotheses introduced in the loading conditions.  相似文献   


19.
以某薄膜型液化天然气(Liquefied Natural Gas,LNG)船的结构设计为例,开展全船屈服强度校核和基于精细网格的有限元疲劳强度分析。针对5种典型装载状态,基于美国船级社(American Bureau of Shipping,ABS)全船强度直接计算指南,采用ABS-DLA/SFA系列软件,用三维波浪载荷预报程序对波浪随机载荷进行长期预报。基于预报结果,针对每种装载状态计算15个设计波参数组,求解全船结构在各载荷组合工况下的应力分布,继而完成屈服强度校核。以甲板机械室与穹顶甲板相交处的关键节点区域的节点设计为例开展细网格局部强度分析,并通过各种改进设计解决应力集中问题。针对2种常用典型操作装载状态及营运于北大西洋海区疲劳寿命满足40a的要求,基于ABS全船疲劳强度直接计算指南计算2个典型细化位置热点应力传递函数,通过谱分析得到疲劳累积损伤和疲劳寿命,完成疲劳强度校核。采用的全船强度和疲劳分析方法和思路适用于其他超大型船舶的结构分析。  相似文献   

20.
Environmental effects have an important influence on Offshore Wind Turbine (OWT) power generation efficiency and the structural stability of such turbines. In this study, we use an in-house Boundary Element (BEM)—panMARE code—to simulate the unsteady flow behavior of a full OWT with various combinations of aerodynamic and hydrodynamic loads in the time domain. This code is implemented to simulate potential flows for different applications and is based on a three-dimensional first-order panel method. Three different OWT configurations consisting of a generic 5 MW NREL rotor with three different types of foundations (Monopile, Tripod, and Jacket) are investigated. These three configurations are analyzed using the RANSE solver which is carried out using ANSYS CFX for validating the corresponding results. The simulations are performed under the same environmental atmospheric wind shear and rotor angular velocity, and the wave properties are wave height of 4 m and wave period of 7.16 s. In the present work, wave environmental effects were investigated firstly for the two solvers, and good agreement is achieved. Moreover, pressure distribution in each OWT case is presented, including detailed information about local flow fields. The time history of the forces at inflow direction and its moments around the mudline at each OWT part are presented in a dimensionless form with respect to the mean value of the last three loads and the moment amplitudes obtained from the BEM code, where the contribution of rotor force is lower in the tripod case and higher in the jacket case and the calculated hydrodynamic load that effect on jacket foundation type is lower than other two cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号