首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 514 毫秒
1.
《Marine Structures》2006,19(2-3):110-140
The operation of mobile jack-up drilling rigs in harsher ocean environments requires enhanced understanding of their behaviour in storm loading conditions and suitable numerical simulation tools for the assessment of their suitability for a particular site. This paper introduces the numerical program SOS_3D, which incorporates appropriate models for the three components of the structure, the soil and the environmental loading of offshore structures like jack-ups. The program is formulated for three-dimensional (3D) analysis and provides an integrated approach to the inter-related aspects of fluid–structure–soil interaction analysis. In applying the program, results of an example jack-up subjected to both symmetric and asymmetric loading situations are compared and discussed. Quasistatic push-over analyses are used to illustrate aspects of jack-up behaviour in three dimensions. Furthermore, jack-up response to storm loading conditions is predicted in dynamic wave loading analyses, demonstrating the necessity of 3D dynamic simulations and emphasising the benefit of using a force-resultant foundation model based on plasticity theory.  相似文献   

2.
Mobile jack-up drilling rigs are typically supported by individual, large diameter spudcan foundations. Before deployment, the suitability of a jack-up to a location must be shown in a site-specific assessment under loads associated with a 50-year return period storm, which ultimately need to be resisted by the foundations. The capacity of the spudcans under combined vertical, horizontal and moment loading is therefore integral to the overall site-specific assessment of the jack-up.In soft clays, spudcans can penetrate deeply into the seabed, sometimes up to several footing diameters, with soil flowing around the downward penetrating footing, sealing the cavity. Although this is generally believed to provide some additional bearing capacity to the footing, no detailed study or formal guidance is available to date. This study, therefore, investigates the influence of soil back-flow on the failure mechanisms and quantifies the effect on the capacity of a spudcan under general loading through finite element analyses. A closed-form analytical expression is developed that describes the capacity envelope under combined loading, applicable to embedment depths ranging from shallow to deep.  相似文献   

3.
A jack-up platform,with its particular structure,showed obvious dynamic characteristics under complex environmental loads in extreme conditions.In this paper,taking a simplified 3-D finite element dynamic model in extreme storm conditions as research object,a transient dynamic analysis method was proposed,which was under both regular and irregular wave loads.The steps of dynamic analysis under extreme conditions were illustrated with an applied case,and the dynamic amplification factor(DAF) was calculated for each response parameter of base shear,overturning moment and hull sway.Finally,the structural response results of dynamic and static were compared and analyzed.The results indicated that the static strength analysis of the Jack-up Platforms was not enough under the dynamic loads including wave and current,further dynamic response analysis considering both computational efficiency and accuracy was necessary.  相似文献   

4.
Before a jack-up can operate at a given location, a site-specific assessment of its ability to withstand a design storm during operation must be performed. During this assessment, the complex state of stress and strain under a spudcan is usually simplified to a value of foundation stiffness that is integrated as a boundary condition into the structural analysis. Soil stiffness is a critical parameter affecting the foundation and structural load distribution and displacements, and the jack-up natural period and dynamic response. The level of spudcan stiffness is an area of intense interest and debate. This paper assesses appropriate stiffness levels for numerical simulation. Utilising results from a detailed “pushover” experiment of a three-legged model jack-up on dense sand, the paper compares the experimental pushover loads and displacements on the hull and spudcans to numerical simulations using different assumptions of spudcan stiffness. These include pinned and encastré footings, linear springs and a force-resultant model based on displacement-hardening plasticity theory. Constant stiffness levels are shown to be inadequate in simulating the experimental pushover test. The non-linear degradation of stiffness associated with the latter force-resultant model is critical.  相似文献   

5.
A three-level procedure for assessing jack-up foundation stability for more or less homogenous soils is described. The objective is to provide a rational framework for these assessments that ensures their safe operation in extended year-round operations and enables their use in deeper waters than at present.

The three levels of the procedure have to be entered successively as long as foundation stability cannot be proven. The first level is a screening exercise and essentially replaces the well-known preload check. The second level compares factored foundation loads resulting from a structural analysis with foundation capacities obtained with ultimate bearing capacity formulae. The most refined third level assesses whether the displacements associated with these loads lead to an acceptable situation, i.e. capacity increase and/or load redistribution that does not result in collapse of the jack-up unit.

Since, for maximum benefit, this third-stage analysis requires a non-linear foundation model to be linked with the structural package used: such a tool is provided in the paper. Examples are given to demonstrate the impact of the assessment procedure.

This procedure forms part of the overall in-house approach to the assessment of jack-ups and has already been offered to the jack-up industry as part of the continuing efforts towards establishing common and accepted standards for jack-up assessments. Further developments have been identified and will be pursued.  相似文献   


6.
Weldability problems in jack-up rigs arise principally in leg construction where particularly high-strength steels (690 N mm−2 yield) are used for chords and racks. Attainment of mechanical properties is not usually difficult, although procedural trials are advisable.

Of potential fabrication problems, hydrogen cracking (heat-affected zones or weld metal) is of greatest concern, and consideration of solidification cracking is advisable. Lamellar tearing is not generally a problem with modern steels, and the risk of stress-relief cracking will be confined to the limited number of joints which can be heat-treated.

Fatigue cracking is probably the major cause of service failure of jack-up rigs, and the use of high-strength steels, which permits higher static stress limits, can exacerbate this problem. Hydrogen-induced stress corrosion can also occur, either due to cathodic polarisation or corrosion, particularly in the presence of H2S in foul sea-water. For this reason weld hardness limits need to be maintained.  相似文献   


7.
以某400英尺自升式钻井平台为研究对象,建立了相应的三维有限元分析模型,综合考虑风浪流包括地震等环境载荷和桩土效应的影响,对风暴自存状态下自升式钻井平台的响应进行了分析,通过比较传统的铰支模型和基于Winkler地基梁的桩土相互作用模型,并叠加地震波的作用,结果表明,传统的铰支模型计算结果偏于保守,考虑了桩土效应后,平台的最大侧向位移有所降低。同时,地震对平台的响应分析结果影响较大,叠加地震波后平台的水平向位移最大值增大幅度在60%以上,且不同的桩基模型考虑地震后增大的幅度也不一样。  相似文献   

8.
林一 《船舶工程》2015,37(8):83-88
桩靴/地基承载力的准确预报是确保自升式平台进行海上插桩作业安全性的重要前提,常规的规范算法在处理复杂地基条件时存在困难。基于非线性数值分析方法,在对加载点位置、网格尺寸、地基边界等关键技术进行研究的基础上,以某400ft水深自升式平台为例,分别对海底均质土和成层土的承载力进行了研究。同时,对各土层参数的影响进行了详细分析,为探索插桩过程中地基破坏原理和承载力计算提供了一些参考。  相似文献   

9.
自升式平台在拖航移位时,大部分桩腿位于平台上部,受风面积很大,在平台拖航移位过程中会受到很大的风倾力矩,有可能导致平台倾覆,故需对平台拖航进行稳性分析研究,确保平台拖航安全。本文提出了一种利用Moses软件对FX自升式平台进行完整稳性和破舱稳性分析的方法,该方法简单实用,计算效率高。使用该方法分析平台稳性,得出如下结论:自升式平台的吃水越大,其稳性越差;FX平台完整稳性的危险风向角为15度,破舱稳性的危险风向角为120度,最危险的破舱组合为压载舱2和4。论文成果可为类似平台的稳性分析提供参考,为平台的安全拖航提供技术支持。  相似文献   

10.
This paper describes the development of a non-linear, dynamic jack-up analysis method in the time domain. It provides background as to why and when such analysis is required.

The theoretical background of the methods applied are discussed and the main features of the programme are described.  相似文献   


11.
H. Kje  y  N. G. B  e  T. Hysing 《Marine Structures》1989,2(3-5):305-334
The extreme wave and current response of a typical North Sea jack-up drilling platform has been calculated using nonlinear, stochastic, time-domain analysis techniques. A statistical treatment of the response-time histories has been performed. Appropriate probability distributions have been fitted to simulated response amplitudes and extrapolated to determine extreme values in storms of 3 or 6 h duration. Nonlinear geometric effects and dynamic effects are also addressed.

The results of the nonlinear time-domain analyses are compared to the results of more simplified methods used in jack-up designs.  相似文献   


12.
自升式海洋钻井平台固桩架力学性能研究   总被引:2,自引:0,他引:2  
为了研究SuperM2自升式海洋钻井平台固桩架在预压、作业、暴风自存工况下的力学性能,文中对固桩架采用壳单元,通过建立固桩架、桩腿及支架处的力学模型,确定载荷的分布,并综合考虑了预压、作业、暴风自存各工况下水平载荷与垂直载荷的组合作用以及风载荷与船体夹角的影响,从而研究了固桩架在0°,30°,60°,90°,120°共5个特征角度时的力学特性,并以此为基础论述了船体和桩腿的连接刚度.研究结果表明:当特征角度为30°和90°时,固桩架导向产生最大应力;且在作业及暴风自存工况下,船体和桩腿的连接刚度分别为79.398N/mm和82.445N/mm.  相似文献   

13.
由于冰荷载研究的限制,冰区自升式钻井平台尚未形成基于动冰力响应分析的结构设计。为了合理地开展自升式平台结构的抗冰概念设计与安全评价研究,冰荷载下自升式钻井平台的动力响应分析是十分必要的。该文首先分析该类柔性结构在动冰荷载下的动力特性;其次,结合开展的自升式平台冰荷载模型实验研究,明确带齿条桩腿的自升式平台冰荷载作用形式;最后,对渤海某自升式钻井平台在典型冰况下进行冰振动力响应分析。文中的研究对冰区自升式钻井平台抗冰设计及冰振安全评估提供了合理的参考。  相似文献   

14.
The events leading up to the capsize and total loss of a jack-up under tow are briefly summarised. The investigation of the causes of this are described in some detail. It involved model tests, finite element analysis, stability calculations, a determination of motions by analysis of newsreel videos taken at the time and close examination of an underwater film taken of the wreckage.

The likely sequence of structural failures leading up to the capsize is established. These are summarised and the lessons learnt from the enquiry highlighted.  相似文献   


15.
An unmanned automated boat equipped with an acoustic Doppler current profiler was used in field surveys at a tidal inlet, the Southwest Pass of Vermillion Bay, Louisiana on Sept 6 and Oct 6, 2007. During the first survey, under calm weather conditions, a small scale eddy with a diameter of 300 m was discovered with strong upwelling and downwelling zones. A detailed analysis of this small eddy shows that the eddy's velocity field is relatively uniform in the vertical and the eddy is formed by a flow convergence, tidal velocity shear induced relative vorticity, and the interaction between the horizontal flows and bathymetry. The major upwelling area is where an uphill flow occurs while the major downwelling area is where a downhill flow occurs. The vorticity of this eddy is on the order of 0.013 s? 1, which is two orders-of-magnitude larger than the planetary vorticity, and one-order-of magnitude larger than that in a typical tidal inlet without eddies. The Coriolis effect is thus insignificant and the generation of the eddy cannot be affected by the earth rotation. The maximum upwelling and downwelling velocities exceed 0.3 m/s. This high vertical velocity in a tidal inlet does not appear to have been reported before. The second survey, conducted under a thunder storm condition, did not reveal a similar eddy at the same location during roughly the same tidal phase. Though the measurements of 3-D flow structure under a thunder storm condition in a tidal channel does not appear to have been reported before, the second survey is of important value in providing support of the mechanism of the eddy formation during the first survey: the wind tends to produce downwind flow in shallow water than in deep water, producing a velocity shear counterproductive to the formation of the eddy. Therefore, the second survey under a thunder storm condition did not show an eddy. A scaling analysis of the non-hydrostatic flow shows that the uphill and downhill flows introduce a non-hydrostatic flow component proportional to the square of the bottom slope which leads to the conclusion that the non-hydrostatic flow component affects less than 10% of the vertical momentum balance.  相似文献   

16.
自升式平台齿轮齿条应变测量与有限元强度分析   总被引:1,自引:1,他引:0  
吴富生  柏垠  滕青  张东红 《船舶工程》2014,36(2):103-106
自升式平台齿轮齿条承受重载,受力情况复杂。在抬升装置实验台上进行应力测量,在ANSYS下建立整体有限元模型进行强度分析。对比结果,验证有限元分析结果是有效的。为自升式平台升降系统的设计和研发提供了参考依据  相似文献   

17.
本文介绍了自升式钻井船圆柱桩腿在垂向载荷作用下的强度问题,着重讨论了桩腿开孔强度和桩腿承载能力,供设计参考。  相似文献   

18.
自升式钻井平台桩靴裂纹分析、处理及修复研究   总被引:1,自引:1,他引:0  
黎剑波 《中国修船》2012,25(5):52-54
桩靴是自升式平台的重要组成部分,主要作用是支撑整个平台,将平台所受的载荷传递到海床.一旦桩靴失效,将导致桩腿下沉,平台无法保持水平.文章利用有限元方法研究了自升式平台桩靴在出现裂纹后的应力水平,并研究相关的应对措施与修复方法.  相似文献   

19.
自升式钻井平台属于典型的柔性结构。由于冰与柔性抗冰结构相互作用的复杂性,长期以来尚未形成基于动冰力响应分析的结构设计。结构抗冰设计中大都是从极端荷载出发,只考虑最大静冰力或最大倾覆力矩是否能推倒平台。基于对渤海辽东湾柔性抗冰平台的多年监测,发现强烈的冰激振动引起平台管节点疲劳失效、上部设施的非正常运行、作业人员不舒适等问题的风险性要远大于极端静冰荷载下结构的整体安全问题。文中基于多年现场冰与结构作用观测及冰荷载的研究成果,提出了柔性抗冰结构设计中应考虑的主要失效模式及评价方法。最后,以渤海某典型自升式钻井平台为例,对其抗冰性能进行评价。该文的研究可为寒区自升式平台的抗冰概念设计提供合理依据。  相似文献   

20.
汪张棠  赵文峰  薛颖 《船舶》2008,19(5):53-57
“中油海62”平台是一艘自升式修井作业平台,最大作业水深达到40m。自升式平台要做到“站得住、升得起、拔得出”,升降系统是关键。吸取国内外同类型平台的优点,该平台采用圆柱形桩腿带桩靴配以电动齿轮齿条升桩机构,可以连续升降、操作方便、安全可靠,经济实用。通过阐述升降系统的组成,载荷分析和强度计算,对升降系统设计作较详细的介绍以供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号