首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
该文建立了船舶电力系统的自组织临界性脆性模型,对船舶电力系统进行脆性分析,通过考察潮流动态来研究脆性发生的机理。该模型分为快动态过程和慢动态过程,前者为基于改进的直流潮流模型的船舶电力系统脆性模型算法,后者为船舶电力系统节点负荷和线路容量增长算法。仿真结果表明,船舶电力系统的脆性故障规模与发生次数在曲线的尾部都具有幂律特性,船舶电力系统脆性具有自组织临界性;同时,过载参数会影响船舶电力系统脆性的自组织临界性。  相似文献   

2.
基于复杂系统脆性结构模型的船舶电力系统脆性分析   总被引:2,自引:0,他引:2  
结合船舶电力系统递阶层次结构,建立了船舶电力系统的脆性结构模型,该模型分为脆性风险层、系统结构层、脆性事件层和脆性因素层.在该模型基础上,提出了一种基于层次分析法的船舶电力系统脆性分析方法,通过定量计算系统脆性结构模型中各层元素对系统总目标的合成重要度系数,找出最容易导致船舶电力系统脆性发生的脆性因子,从而为预防船舶电力系统脆性发生提供了计算依据.  相似文献   

3.
为了提高船舶电力系统稳定性,提出基于粒子群优化算法的船舶电力系统脆性分析方法,构建船舶电力系统的稳定性控制约束参量模型,以电机模型参数为控制对象,通过船舶电力系统电机的转速信息和电磁转矩信息进行船舶电力系统脆性特征分析,采用PI控制算法进行船舶电力系统的输出稳定性控制,建立船舶电力系统的反馈动态补偿稳定性控制模型,结合粒子群优化算法进行船舶电力系统稳定性控制的参量自适应调节,实现船舶电力系统脆性预测和稳定性控制。仿真结果表明,采用该方法进行船舶电力系统脆性分析的准确性较好,控制稳定性较强,提高了船舶电力系统的输出鲁棒性。  相似文献   

4.
本文采用有限元软件ABAQUS建立了船舶撞击高桩码头群桩的空间有限元模型。通过计算评估了撞击力、桩体刚度、撞击位置和撞击角度下对群桩结构损伤位置的影响。基于人工神经网络(ANN)方法,对不同参数组合下的群桩结构损伤位置进行了预测,并对ANN方法的可行性进行了评估。  相似文献   

5.
船舶电力系统稳定性对于整个船舶的安全来说非常重要,尤其是在现代化的船舶系统中,包含了非常多的用电设备,而这些设备的用电负荷也在不断提升,这对整个船舶的电力控制系统提出了严峻的挑战。因此,为了增强船舶电力系统的生存能力,能够主动适应各种复杂的航行环境,必须避免电力系统发生崩溃性的故障。本文主要对船舶电力系统的脆性进行重点研究,建立电力系统的连锁故障防御模型。并对系统中的主要参数进行统一的优化,简化整个故障排除流程,降低了最大崩溃路径的传播。在对电力系统的脆性进行仿真时,重点对系统的稳定性和收敛性进行了验证。  相似文献   

6.
以船舶故障诊断作为应用背景,对人工神经网络在船舶冷却系统故障诊断中的应用进行研究。首先对船舶引擎冷却系统进行介绍;然后介绍人工神经网络的基本知识,给出基于人工神经网络的船舶引擎冷却系统故障诊断方法。该方法选用BP神经网络模型,并利用LM算法来提高方法的收敛速度。实验结果表明,本文给出的方法具有较高的计算能力和准确率。  相似文献   

7.
电力系统是船舶的重要组成部分,主要由柴油发电机、配电网络、配电板和用电设备等组成,其平稳运行决定了船载用电设备的工作性能。船舶电力系统的结构复杂,工作环境恶劣,因此在内部和外部干扰下很容易发生系统的崩溃问题。本文针对船舶电力系统的脆性模型,结合粒子群优化算法,对船舶电力系统脆性最大崩溃路径进行仿真研究,对提高船舶电力系统安全性和稳定性具有重要的指导作用。  相似文献   

8.
随着自动化技术和电力推进技术在船舶工业的广泛应用,船舶电力系统的稳定性、可靠性显得更加重要,针对大型船舶电力系统的脆性优化也引起了国内外的广泛研究。大型船舶电力系统的故障恢复和脆性优化具有重要意义,一方面可以提高船舶电力系统的可靠性,为船载用电设备提供充足的电力;另一方面,电力系统网络结构的优化有助于提高电力系统的集成特性,降低成本的同时可以提高供电效率。本文主要研究了大型船舶电力系统的脆性优化问题,采用了粒子群优化算法和脆性建模技术,对全面分析复杂的船舶电力系统,预防和控制电力系统脆性故障,提高电力系统可靠性具有重要的理论和实际应用价值。  相似文献   

9.
船舶电力系统负荷模型及参数辨识研究   总被引:1,自引:0,他引:1  
该文在分析了船舶电力系统负荷特性的基础上,将陆用电力系统负荷仿真研究中的一种综合负荷模型引入到船舶电力系统负荷仿真研究中,采用遗传算法辨识了模型参数,并进行了实际模型与辨识模型的对比分析,验证了模型的合理性.  相似文献   

10.
近年来人工智能技术在很多领域得到了成功应用,特别是故障诊断方面。船舶电力系统是保障船舶自动化系统正常工作的重要组成部分。由于船舶电力系统工作环境恶劣,因而船舶电力系统一旦出现故障将会产生很严重的后果。传统船舶电力系统故障检测费时费力,本文通过对人工智能技术进行分析,研究了人工智能技术在船舶电力系统故障诊断中的应用,提出了一种故障诊断系统架构,重点研究了基于人工神经网络以及专家系统的电力系统故障诊断,设计了神经网络模型,给出了推理机的故障诊断流程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号