首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 31 毫秒
1.
战斗部舱内爆炸对舱室结构毁伤的实验研究   总被引:3,自引:0,他引:3  
为探讨舰船抗爆抗穿甲防护结构设计,利用导弹模拟战斗部进行了舱室内部爆炸模型试验,研究内爆条件下高速破片和爆炸冲击波对舱室结构的联合毁伤效应,分析舱内爆炸环境下舱室板架结构的典型破坏模式.结果表明:模拟战斗部内爆载荷作用下舱室结构的整体变形以冲击波破坏为主;战斗部破片对舱壁板架产生侵彻穿孔破坏,并在近爆区板架上形成了破口密集区域;单个破口对舱室整体结构破坏影响不大,而密集破口区在后续冲击波作用下会发生撕裂,形成大破口,影响舱室整体结构性能.该研究结果,可用于指导舰船防护结构的设计.  相似文献   

2.
空中接触爆炸作用下船体板架塑性动力响应及破口研究   总被引:10,自引:0,他引:10  
导弹或炸弹接触爆炸对船体板架的破坏作用,可分为初始穿孔作用和爆炸冲击波作用两部分,从而可将其破损看作早期穿孔和壳板的后续塑性变形两个阶段.为简化计算,将船体板架按照一定的等效原则简化为圆形板.第一阶段,该圆形板在中心产生初始穿孔;第二阶段,爆炸冲击波作用以冲量的形式作用在穿孔后的剩余板结构上,给板一个初始动能.剩余结构在该动能驱动下继续变形,动能逐渐转化为变形能,并最终达到平衡状态.通过假设一定的塑性变形模式,得到变形能与变形的关系,利用动量定理和能量守恒定理,建立了板架塑性变形的理论模型,得出了变形挠度的计算公式.通过接触爆炸试验,得出材料极限动应变的估算值,并以最大环向应变等于极限动应变作为板架径向撕裂的条件,得到破口半径的计算公式.利用上述破口计算方法,对某型驱逐舰的几个典型船体甲板板架在受到飞鱼导弹及GBV-12型激光炸弹攻击时的变形挠度和破口尺寸进行计算.以实船在遭受空中打击时的战损事例和打靶试验数据进行比较后,证实该破口计算公式可用于船舶受空中接触爆炸作用下产生的破口估算.  相似文献   

3.
船体板架是舰船中最主要的结构形式,研究在水下接触爆炸作用下的船体板架毁伤过程对于舰船的抗爆抗冲击设计具有重要意义。借助AUTODYN通用软件,建立船体板架水下接触爆炸数值模型,同时运用耦合欧拉—拉格朗日算法进行计算,并与试验最终失效模式进行对比,吻合良好。分析了水下接触爆炸作用下船体板架毁伤全过程,并对船体板架破口的形成和扩展进行了分析,探讨了加强筋的破坏模式,提出了板架结构中板和加强筋破坏模式的耦合效应。通过研究,揭示了水下接触爆炸作用下船体板架的毁伤特性。  相似文献   

4.
利用能量守恒和动量定理,通过计算靶板塑性变形挠度,以极限塑性应变为准则,建立了爆炸冲击波载荷作用下舱壁结构中心区域破口尺寸的计算方法,并开展了近距离空爆模型试验。试验结果表明,本文建立的计算方法具有一定准确性,理论计算结果与本文试验结果相对误差为14.2%,与参考文献试验结果对比误差为10.9%,可对舱壁结构在爆炸冲击波作用下产生的破口尺寸进行快速估算。  相似文献   

5.
对舰船板架在接触爆炸载荷作用下的变形问题进行了研究.基于变分原理得到四边固支的板架残余变形的近似计算公式,根据破坏准则给出了估算破口半径的近似方法,并与经验公式进行了比较,结果基本上是合理的,可应用于舰船结构在爆炸冲击波作用下的毁伤或防护方面的工程预测,从而为舰船的安全防护设计提供理论依据.  相似文献   

6.
《舰船科学技术》2013,(10):33-37
水下爆炸载荷使船体壳板产生破口及沿破口的破损区域,国内外学者针对该问题做了大量的试验研究并提出了破损半径及破口半径估算方法。利用LS-DYNA对典型舱段的底部及舷侧接触爆炸工况进行数值试验,并将数值试验结果与估算方法结果相对比,说明采用修正吉田隆破口估算公式和鱼雷水下接触爆炸破损半径经验公式对水下接触爆炸使船体壳板产生破口的估算更为准确。  相似文献   

7.
为研究超高分子量聚乙烯板在爆炸冲击波和破片侵彻联合载荷作用下的破坏及响应,采用LS-DYNA数值仿真的方法来模拟爆炸产生的冲击波及破片群作用到靶板上的过程,通过改变爆炸距离、载荷形式和靶板厚度等因素,得到在不同条件下靶板变形破坏的结果.其模拟的结果表明:相比于冲击波或破片群的单一载荷作用,联合载荷作用对靶板的破坏能力更强;在联合作用下,随着爆距的增加,靶板的整体弯曲变形和破坏程度减小,靶板的破坏模式由开始的集团冲塞破口转为穿孔破口和撕裂破口共同存在,直至只存在穿孔破口;在联合作用下,随着靶板厚度的增加,破片群穿透靶板的剩余速度逐渐减小,速度衰减率增大,靶板抵御破片侵彻的能力提高,但仅改变靶板厚度对整体变形及破坏模式的影响并不明显.  相似文献   

8.
船体板架在水下接触爆炸作用下的破口试验   总被引:19,自引:0,他引:19  
针对船体中常见的加筋板结构,在矩形方板上运用了3种不同尺寸的T型材,采用“井”字形和“++”字形两种加筋形式设计了4个板架模型,将模型四边刚性固定,在板中央放置炸药,分别对其进行了水下接触爆炸试验。爆炸作用下板架模型均以花瓣形破裂,产生大面积的破口,不同形式和尺寸的加强筋对板架的破坏程度具有不同的影响。通过对破口尺寸和形状的观测,分析了加强筋对破口长度的影响,提出了板架结构加强筋相对刚度Cj的概念,描绘了不同尺寸加强筋在不同炸药量下对板架结构破口范围的影响。同时,对现有的水下接触爆炸作用下的破口长度估算公式进行了修正,给出了考虑加强筋影响的破口计算公式;经过比较,该公式比现有的破口估算公式与试验结果更加吻合。  相似文献   

9.
为研究爆点位置对导弹接触爆炸下船体板架破坏所造成的影响,通过有限元模拟研究加筋板架在由2种药量和4个爆点位置组合成的8种工况下的破坏过程、破口大小及变形能,对比分析同种药量下爆点位置对加筋板架破坏的影响。结果表明:相同药量的炸药在加筋板架的不同爆点位置接触爆炸时,所产生破口大小间的差异可达20%以上,药量较小时,破口形貌的差别也较大;炸药在肋骨与纵骨交汇处爆炸时,与相同炸药在板格中心爆炸相比,加强筋的变形能可高出2倍左右,加筋板架的变形能则可高出40%以上。  相似文献   

10.
以典型舰船舱室为研究对象,分别建立对应2种打击模式下的多舱室结构模型。采用有限元分析软件,模拟多个舱室结构在内部爆炸冲击载荷作用下的变形和破坏过程,对炸药在舱内爆炸的毁伤特点以及舱室结构的破坏机理进行分析。分析结果表明,舱室结构破坏受炸药装药量、舱壁厚度、初始破口等因素影响,且初始破口对最终破坏效果的影响随着装药量的增加而降低。在对内部遭受较大装药量打击的舰船进行结构毁伤评估时,对于中心处起爆的情况,在进行多舱室建模时,可近似忽略导弹破口的影响,从而方便建模和计算过程。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号