首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   413篇
  免费   15篇
公路运输   161篇
综合类   155篇
水路运输   34篇
铁路运输   75篇
综合运输   3篇
  2023年   1篇
  2022年   8篇
  2021年   10篇
  2020年   14篇
  2019年   7篇
  2018年   7篇
  2017年   2篇
  2016年   7篇
  2015年   11篇
  2014年   32篇
  2013年   26篇
  2012年   23篇
  2011年   28篇
  2010年   26篇
  2009年   25篇
  2008年   34篇
  2007年   48篇
  2006年   51篇
  2005年   11篇
  2004年   10篇
  2003年   13篇
  2002年   5篇
  2001年   4篇
  2000年   1篇
  1999年   3篇
  1998年   1篇
  1997年   3篇
  1996年   2篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   4篇
  1991年   1篇
  1990年   2篇
  1988年   1篇
排序方式: 共有428条查询结果,搜索用时 15 毫秒
361.
高墩大跨连续刚构桥收缩徐变效应的概率分析   总被引:2,自引:0,他引:2  
介绍了结构收缩徐变效应的概率分析方法,分析了高墩大跨连续刚构桥在变形预测方面的不确定特性,明确了其基于概率的时效变形计算及设计准则,确定了重要的统计变量,并在数值模拟中引入旨在提高抽样精度及减少抽样次数的拉丁超立方体抽样。以广西龙滩布柳河大桥为工程背景,进行了相关的概率时效分析,得出了一些有益的结论,为布柳河大桥的施工及监控工作提供有益的指导。  相似文献   
362.
用有限元参数二次规划法来分析轮轨的接触问题,提出了研究轮轨关系问题的新方法;同时给出了用此方法计算轮轨接触区内力的结果,并指出了各接触点对的接触状态和受力情况.  相似文献   
363.
为了研究预应力混凝土连续箱梁桥后期下挠影响因素,以一典型3跨预应力混凝土连续梁桥为研究对象,采用规范和有限元数值计算结合的方法,分析了箱梁预应力损失和变形的时变效应,在此基础上,进一步分析了边中跨比、合龙顺序和合龙压重等因素对箱梁后期下挠的影响。分析结果表明,预应力混凝土连续箱梁桥的时变效应明显,收缩徐变引起的预应力损失和后期跨中下挠值较大;适当地增加边中跨比有利于减小后期中跨的跨中下挠;合龙时,先边跨后中跨合龙并采取适量的压重,是减小跨中后期下挠的有效手段。  相似文献   
364.
谷拉河大桥墩液压自爬模施工受力分析   总被引:3,自引:0,他引:3  
桥梁的高桥墩施工属于特种结构施工范畴,现场施工方案的选择一直以来偏重于经验而忽视施工受力分析.本文基于工程实例,给出了桥梁高墩身施工选用液压自爬模完整的施工受力计算过程,且已成功地应用于工程实践,可供类似特种结构施工参考.  相似文献   
365.
混凝土的收缩徐变会引起混凝土连续梁桥不断上拱或下挠。当前国内在建高速铁路中许多混凝土连续梁桥将采用无碴轨道,其可调性很小,必须控制铺轨后的徐变变形(后期徐变变形)。对几种常用规范的混凝土徐变系数影响因素、计算公式进行了对比研究,并以武广客运专线上一座(70+125+70)m混凝土连续梁桥为例,模拟整个施工过程按几个常用规范对该桥进行对比分析计算,研究了混凝土的收缩徐变对桥梁变形和截面应力的影响。计算结果显示,混凝土的收缩徐变引起的桥梁后期徐变变形不可忽视;根据不同规范计算得出的桥梁后期徐变变形差别较大。  相似文献   
366.
利用金属蠕变理论推导了混凝土徐变的计算公式。在对ANSYS进行二次开发的基础上,以金属蠕变代替混凝土的徐变,编制了徐变的计算程序,实现了对白果渡嘉陵江大桥成桥30 a的徐变仿真分析,实现方法和得出的结论可供参考。  相似文献   
367.
对于大跨径混凝土连续刚构桥的施工监控,线形的控制主要集中在预拱度的设置上,而预设拱度又与桥梁结构的变形计算紧密相连。其中,混凝土徐变变形是很难计算准确的,因而从理论上建立了一个计算这种徐变变形的理论计算公式,其计算结果与其它方法的计算结果基本一致,优点是计算简单准确。  相似文献   
368.
沥青高温流变评价指标对比   总被引:3,自引:0,他引:3  
为了有效评价沥青混合料的高温抗变形性能,应用旋转粘度试验、动态剪切流变试验与重复蠕变试验,测试了粘度、车辙因子与蠕变模型参数,利用伯格斯模型对高温蠕变试验数据进行了拟合,结合沥青混合料高温车辙试验结果,分析了3种高温流变指标与沥青混合料高温性能的相关性。分析结果表明:车辙因子在评价改性沥青混合料高温性能时并不适用,模型参数与沥青混合料动稳定度的相关性最大,达到0.9887,说明蠕变参数可以准确地反映各种沥青混合料的高温抗变形性能。  相似文献   
369.
汉十高铁崔家营汉江特大桥主桥为(135+2×300+135)m四跨连续刚构拱桥。为实现该桥的精确合龙,考虑混凝土收缩徐变效应、温度效应、合龙段钢束荷载作用,采用MIDAS Civil建立该桥有限元模型,并结合施工现场试顶实测数据,研究主梁合龙时桥墩墩顶偏位及对顶力,进行合龙控制。结果表明,混凝土收缩徐变效应、降温效应、合龙段钢束荷载作用对桥墩墩顶偏位的影响方向一致,叠加后对墩身受力较为不利;对顶过程实测墩顶偏位约为理论计算值70%,需对控制偏位、对顶力进行修正;考虑结构实际刚度偏大,最终对顶控制墩顶偏位取理论计算值的80%以进行合龙控制,对比可知,墩顶实测偏位与控制偏位最大偏差为3.6%,成桥线形与预期吻合较好。  相似文献   
370.
In order to investigate the effect of curved track support failure on railway vehicle derailment, a coupled vehicle–track dynamic model is put forward. In the model, the vehicle and the structure under rails are, respectively, modelled as a multi-body system, and the rail is modelled with a Timoshenko beam rested on the discrete sleepers. The lateral, vertical, and torsional deformations of the beam are taken into account. The model also considers the effect of the discrete support by sleepers on the coupling dynamics of the vehicle and track. The sleepers are assumed to move backward at a constant speed to simulate the vehicle running along the track at the same speed. In the calculation of the coupled vehicle and track dynamics, the normal forces of the wheels/rails are calculated using the Hertzian contact theory and their creep forces are determined with the nonlinear creep theory by Shen et al [Z.Y. Shen, J.K. Hedrick, and J.A. Elkins, A comparison of alternative creep-force models for rail vehicle dynamic analysis, Proceedings of the 8th IAVSD Symposium, Cambridge, MA, 1984, pp. 591–605]. The motion equations of the vehicle/track are solved by means of an explicit integration method. The failure of the components of the curved track is simulated by changing the track stiffness and damping along the track. The cases where zero to six supports of the curved rails fail are considered. The transient derailment coefficients are calculated. They are, respectively, the ratio of the wheel/rail lateral force to the vertical force and the wheel load reduction. The contact points of the wheels/rails are in detail analysed and used to evaluate the risk of the vehicle derailment. Also, the present work investigates the effect of friction coefficient, axle load and vehicle speed on the derailments under the condition of track failure. The numerical results obtained indicate that the failure of track supports has a great influence on the whole vehicle running safety.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号