首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   57篇
  免费   5篇
公路运输   38篇
综合类   11篇
水路运输   1篇
铁路运输   11篇
综合运输   1篇
  2023年   3篇
  2022年   5篇
  2021年   1篇
  2020年   3篇
  2019年   6篇
  2018年   1篇
  2014年   2篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   4篇
  2006年   7篇
  2005年   5篇
  2004年   2篇
  2003年   3篇
  2002年   1篇
  2001年   1篇
  2000年   4篇
  1999年   4篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
排序方式: 共有62条查询结果,搜索用时 15 毫秒
11.
主动悬架系统对汽车加速性能改善分析   总被引:2,自引:0,他引:2  
余强  马建 《汽车技术》2005,(3):20-22
针对前轴驱动汽车加速过程中质量转移而使最大驱动力下降的问题,提出了利用主动悬架系统减小汽车车轮动态载荷对其进行改善的方法,并进行了控制系统的设计。模拟分析表明,利用主动悬架系统可以有效地降低前轴驱动汽车由于质量转移而引起的车轮动载荷的改变,是解决加速过程中驱动力下降的一个比较有效的方法。  相似文献   
12.
主动悬架系统对汽车侧翻稳定性改善分析   总被引:4,自引:0,他引:4  
余强  马建 《中国公路学报》2005,18(3):114-117
针对被动悬架系统侧翻稳定性比较差的问题,提出采用主动悬架系统的方法进行改善。通过汽车侧倾运动状态分析,建立了被动悬架系统、主动悬架系统和控制系统模型。模拟分析得到主动悬架系统使得汽车在弯道行驶时的侧倾角有效值下降了92.8%,侧倾角加速度有效值下降了78.2%,侧翻因子有效值下降了92.6%。结果表明:利用主动悬架系统可以有效地降低汽车非直线行驶时的侧倾角以及侧倾角加速度,提高汽车的侧翻稳定性,是提高汽车非直线行驶状态下安全性的一个合理的解决方案。  相似文献   
13.
本文采用连续模糊控制方法来实现具有地面不平度预测量系统的主动悬架动力装置的控制,并通过模拟计算证明了采用此方法可使汽车和行驶平顺性和行驶安全性同时得到有效改善,结果还明,它可以有效降低主动系统消耗的最大功率和一定程度降低总能量的消耗。  相似文献   
14.
主动悬架系统的连续模糊控制   总被引:17,自引:0,他引:17  
余强  魏朗 《汽车技术》1999,(1):9-12
在主动悬架系统中,动力装置的控制非常重要。为了能在利用较少的状态量作为反馈信号的条件下达比较理想的控制效果,宜采用连续模型控制方法来实现主动悬架动力装置的控制。模拟计算表明, 该方法可使汽车的行驶平顺性和安全性同时得到有效改善。  相似文献   
15.
《公路》2009,(7)
为了研究强制控速设施结构形式(高度和宽度)对重型货车的影响,以8种不同结构形式的强制控速设施为试验对象,采用重型货车进行了实车道路试验,并用五轮仪和32通道数据采集仪记录了实车试验时的试验车速、车轴加速度、车身加速度数据.然后根据振动理论建立了以车轴加速度峰值和车身加速度峰值为因变量,以强制控速设施高度、宽度及试验车速为自变量的非线性三元回归模型,并利用最小二乘法则求出了模型系数的估计值,获得了回归方程,最后对回归结果进行了分析.分析结果表明:车轴加速度峰值和车身加速度峰值与强制控速设施高度成正比;车轴加速度峰值和车身加速度峰值与车速和宽度的比值成二次曲线关系;对于同一强制控速设施宽度,车身加速度峰值曲线最大值所对应的车速为车轴加速度峰值曲线最大值所对应车速的1.65倍.  相似文献   
16.
半主动悬架系统对汽车侧翻稳定性的改善   总被引:8,自引:2,他引:6  
为提高汽车高速弯道行驶、紧急变线行驶时的安全性,针对被动悬架系统侧翻稳定性比较差的问题,建立了半主动悬架系统模型和控制系统模型。通过控制器调整减振器阻尼力的大小,改变车身侧倾振动状态。模拟分析得到半主动悬架系统使得汽车在高速变线行驶时的侧倾角有效值下降了60.9%,侧倾角加速度有效值下降了64.6%,侧翻因子有效值下降了35.2%。结果表明利用半主动悬架系统可以有效降低汽车非直线行驶时的侧倾角与侧倾角加速度,提高了汽车的侧翻稳定性。  相似文献   
17.
将轻质高强的碳纤维增强树脂基复合材料(CFRP)应用到多胞结构设计中,有望进一步提升CFRP薄壁结构的耐撞性能及吸能效率。为了研究CFRP多胞结构在多角度加载工况作用下的能量吸收机制及耐撞性能,采用机织平纹CFRP预浸料制备CFRP单胞管以及2个不同规格的CFRP多胞管,并通过调整壁厚使所有结构的质量保持相等;随后,对上述3个试样开展准静态轴向压溃试验,通过试验揭示CFRP多胞管的耐撞性能。此外,建立CFRP多胞管的有限元模型,采用数值仿真的方法揭示多胞管的能量吸收机制,并基于试验验证的有限元模型进一步分析9种不同规格的CFRP多胞结构在多种加载角度下的压溃性能。最后,采用多指标评价方法(COPRAS)对不同构型的多胞管在多种压溃角度下的耐撞性能进行综合评价。试验结果表明:单胞管发生了不稳定的局部屈曲,多胞管发生了稳定的渐进失效,并且在等质量的条件下,多胞管的总吸能比单胞管的总吸能高约68%。仿真结果表明:层内损伤是CFRP多胞管以及单胞管的主要吸能机制,其能量耗散值约占总能量的50%;且随着加载角度的增加,各结构的总吸能逐渐下降,但各吸能机制所耗散能量的占比变化不大,增加胞数以及内壁胞壁的厚度均能小幅度提升多胞管的能量吸收特性。综合耐撞性评价结果表明:试样MT3-4[胞数为9,内部胞壁厚度b为1.178 0 mm(5层),外部胞壁厚度c为0.235 6 mm(1层)]在多种压溃角度下具有更好的综合耐撞性能。  相似文献   
18.
为了研究高速公路小型车的换道行为特性,采用2台无人机同时在200 m的高空对交通流进行拍摄,获取交通流运行状态。构建拍摄路段的高精度地图,获取每一时刻车辆的精确运行状态数据,在此基础上对2个视频进行拼接,最终获得车道位置、速度、车辆编号等8项关键指标,共提取换道行为1 520条,筛选后得到完整的自由换道数据942条。采用车辆轨迹是否持续偏移作为判断换道行为起终点的依据,在此基础上分析换道的时间长度、空间长度、与周边车辆的相互状态以及换道行为的安全性等16个特征参数。得出平均换道时间长度为6.09 s,平均换道空间距离为148.08 m,换道时间与空间长度均符合对数正态分布。换道车辆与目标车道后方车辆的平均距离最小(34.29 m),其相对距离在10 m以内的占28.24%,驾驶人为了加快行驶,在与目标车道后方车辆相对距离较小的情况下,依然采取换道措施。与正前方车辆的相对速度差最大,平均值为10.2 km·h-1,并且在83%的情况下,本车的速度大于前车,说明车辆自由换道是由于前方车辆行驶速度较慢所引起。采用TTC,MTC分别对换道起始时刻的安全性进行分析,并将安全状态划分为4种类型:严重-紧急状态、严重-非紧急状态、非严重-紧急状态、非严重-非紧急状态。其中严重-非紧急,非严重-非紧急这2种状态占比最高。该研究成果对了解中国驾驶人在高速公路上的换道行为特性,以及对建立适用于中国实际交通环境特征的换道行为模型具有一定参考意义。  相似文献   
19.
文章主要研究了某11m大型全承载式公路客车底架在Catia中从二维图纸结构到三维实体模型的建立,然后在三维实体模型的基础上在Hepermesh中建立二维板壳单元的有限元模型,再通过Optistruct有限元求解器对有限元模型进行自由模态求解,来对整个底架进行模态分析,并分析前6阶4自由模态来对底架的模态进行评价,以此分析结果来对底架的动态设计提供可靠的依据。通过有限元仿真分析的结果,来验证底架设计的合理性,大大地缩短设计周期,节省一大笔昂贵的实车试验费。因此,对底架进行3D建模以及有限元分析流程,会对底架的设计具有指导作用,即能保证整车设计的合理性,为企业省去大量的人力物力,节约高昂的实验成本,提高设计的工作效率,对企业以及对社会都会产生很好的效益。  相似文献   
20.
为了优化山区公路避险车道参数设计方案,基于离散元基本理论与方法,建立轮胎与避险车道集料颗粒流模型。利用自主研发的轮胎性能测试系统对货车轮胎垂直特性进行了室内台架试验研究,通过检测不同输入条件下的响应,标定了轮胎颗粒流模型细观参数。采用漏斗法测量了避险车道集料休止角,结合离散元颗粒流仿真方法,对集料颗粒流模型表面摩擦因数进行了标定。基于所建立的轮胎与避险车道的集料颗粒流模型,仿真分析了轮胎在避险车道中的行驶过程,模拟了车辆在运行过程中的行驶距离、行驶速度与轮胎转速的变化趋势。在甘肃S308省道K209+400处避险车道进行了实车道路试验,试验结果验证了该仿真方法的正确性。通过所建立的轮胎-颗粒流模型对比分析了不同铺设厚度,不同集料大小下的仿真结果。综合考虑减速效果和施工成本,确立了避险车道铺设厚度、铺设长度、颗粒材料等设计技术参数。研究结果表明:离散元法能够很好地模拟车辆在避险车道中的行驶过程;考虑到颗粒固结等因素,建议避险车道铺设厚度不小于0.8 m;针对行驶速度大于90 km·h-1的载货汽车,避险车道设计长度建议大于130 m;避险车道集料方面,建议选用粒径为1~3 cm且圆度较高的砾石作为路床材料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号