首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   0篇
综合类   1篇
铁路运输   6篇
  2023年   2篇
  2020年   2篇
  2019年   1篇
  2018年   2篇
排序方式: 共有7条查询结果,搜索用时 15 毫秒
1
1.
火山渣是火山岩浆喷发所形成的外观不规则、内部多孔隙的颗粒体,颗粒形状特征深度影响材料工程性质。通过光学显微照相技术获得埃塞俄比亚铁路火山渣填料颗粒的平面投影图像,运用数字图像处理技术测得其几何参数,进而获得用于描述颗粒轮廓形状和棱角性的形状指数。基于数理统计分析方法,讨论粒径变化对颗粒轮廓形状和棱角性的影响规律,进行颗粒形状指数变化在粒径间的显著性检验和粒径内的离散性分析。研究结果表明:火山渣是一种呈块状且表面粗糙的颗粒材料;表征颗粒轮廓形状的轴向系数和长宽比随粒径变化不显著,颗粒轮廓形状差异不大,反映颗粒棱角性的棱角性系数、粗糙度、分形维数随粒径减小而增大,颗粒表面棱角性增强;轴向系数和棱角性系数的检验统计量F值与变异系数的幅值变化较对应的长宽比和粗糙度、分形维数更为明显,对颗粒轮廓形状和棱角性特征有更高的辨识度。  相似文献   
2.
具有多孔轻质特征的火山渣在水和列车动载耦合作用下的颗粒抗破碎能力及填料的变形和强度特性是影响其作为基床填料的关键问题。通过开展体积比3∶1火山渣掺配土质砾砂改良填料的室内动三轴试验,讨论了试样制备、动载及水和动载耦合作用下火山渣颗粒的破碎程度,分析了含水率及围压对改良填料临界动应力和累积塑性变形的影响规律。试验结果表明:处于压实状态的体积比3∶1火山渣掺配土质砾砂改良填料在动载及水和动载耦合作用下的相对破碎率低于3%,颗粒破碎不显著;临界动应力随含水率的增大而减小,随围压的增大而增大,饱和含水状态对应的临界动应力较最优含水状态小42%,但仍能满足普通铁路对基床底层填料动力特性的要求。  相似文献   
3.
为掌握列车荷载作用下路基应力概率分布特征,进行基于我国高速铁路无砟轨道不平顺谱条件下的车辆-线路耦合动力学计算;以路基累积变形效应区不超过基床范围为原则,分析基床厚度与基床以下路基性质的相互关系;结合模型试验获得的填料累积变形状态阈值,基于强度、变形、应变控制准则,进行400km·h^-1行车条件下的无砟轨道基床结构及关键参数研究。结果表明:路基面承受的列车荷载随轨面平顺性呈明显的随机变化特征,动力影响系数服从正态分布,轨道极端不平顺引起的最大动力影响系数为2.146,平均轨道谱下的常遇动力影响系数为1.491;路基累积变形效应区范围随填料强度降低而扩大,基床厚度为2.7m时,由低塑性土填筑的基床以下路基K30应大于等于100MPa·m^-1;以调控累积变形处于快速收敛状态为目标,提出基床表层采用0.7~0.3m厚级配碎石进行强化处理,K30大于等于190 MPa·m^-1,底层选用A,B组填料,相应K30控制值为130~150MPa·m^-1。  相似文献   
4.
针对大轴重货运车辆轴距小的技术特点,分析重载铁路路基承受列车荷载的空间分布规律;基于列车荷载引起路基累积变形效应区沿深度的变化机制,讨论主要承受列车荷载的基床结构与路基填料之间的相互影响关系;根据工程设计的强度、变形、长期稳定性控制要求,探讨40 t超大轴重下基床结构的设计方法。研究表明:提出的“4Z1800/2400”四轴标准轴型荷载模式能较好反映超大轴重列车荷载的路基应力叠加效应;建立的路基累积变形效应不超过基床厚度的设计方法,综合考虑了荷载与填料多因素的影响,是对单因素应力比值法的完善。以累积变形处于缓慢收敛状态的长期稳定性为主控因素,提出轴重40 t重载铁路路基基床层状结构设计指标建议:基床厚度3.5 m,对应基床以下路基K30不低于110 MPa/m;基床表层采用级配碎石强化,厚度0.7 m,要求基床底层K30大于等于130 MPa/m。  相似文献   
5.
研究目的:软质岩路堑基床承载能力较低且易受环境影响,多采用优质填料换填处理,合理的换填厚度是保证基床具有良好服役性能的技术关键。因此本文以高速列车荷载引起的基床累积变形处于弱时间效应的缓慢稳定状态为控制目标,分析软质岩风化程度和抗软化能力对有砟轨道路堑基床换填厚度的影响规律,探讨高速铁路软质岩路堑基床结构合理的换填厚度。研究结论:(1)路基面承受的列车动力作用与轨道不平顺程度呈正相关性,服从正态分布模式;(2)软质岩路堑基床换填厚度随软质岩强度降低呈非线性增加趋势,受水影响程度中等的高铁有砟轨道软质岩路堑基床,在微风化下可按硬质岩处理,弱风化时仅需换填表层0.7 m,强或全风化条件则应加深换填至表层以下0.5~1.0 m;(3)建立的软质岩路堑基床换填厚度分析方法,对完善我国高速铁路基床结构设计技术及标准体系具有参考意义。  相似文献   
6.
无砟轨道结构缝位置的路基面动应力存在集中效应,是产生底座/支承层-路基离缝,进而引发路基翻浆的重要因素。针对CRTSⅢ型板式无砟轨道结构特点及层间接触条件,建立设有混凝土结构缝的轨道-路基空间有限元模型,分析转向架双轴荷载作用于无砟轨道结构连续、轨道板缝、底座缝三种位置下路基面列车荷载分布特征,结合现场实测数据,提出考虑结构缝影响的路基面简化荷载模式。研究表明:路基面列车荷载纵向分布范围与混凝土层间接触条件相关,随摩擦系数增加呈非线性增大趋势,实测摩擦系数对应的纵向计算长度与测试值吻合;结构缝对路基面列车荷载沿纵向分布形态有显著影响,转向架双轴荷载作用于底座结构缝正上方为最不利位置,路基面应力分布模式由连续结构位置的梯形转化为应力较为集中的三角形;底座缝断面的基床应力大于结构连续位置,应力增幅由路基面的33%随深度逐渐衰减至基床底面的8%。  相似文献   
7.
掌握有轨电车交通荷载下路基动力响应特性是设计嵌入式轨道路基结构的关键技术前提.首先,考虑车体间铰接形式、轨道支承特点与路基阻尼影响,构建有轨电车-嵌入式轨道-土质路基耦合动力学模型;然后,以中国普通干线铁路轨道谱为激励,进行动力学仿真;最后,分析路基面承受车辆荷载特点,并讨论动应力放大系数的概率分布特征与沿深度衰减规律.研究表明:嵌入式轨道结构路基面动应力的幅值受轨道随机不平顺影响服从正态分布规律;在有轨电车轴重11 t、设计速度100 km/h、90%干线轨道谱条件下,路基面动应力放大系数服从正态分布N(1.008, 0.1002),超越概率30%的常遇动力系数为1.058,保证率为99.9%的极限动力系数为1.308;受路基材料阻尼影响,动应力放大系数沿深度线性衰减,阻尼增大,衰减趋势加剧;随着深度增加,动应力放大系数均值逐渐减小,由动力作用增大区略大于1过渡到动力作用减弱区小于1.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号