首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   0篇
公路运输   15篇
水路运输   4篇
  2018年   4篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2012年   4篇
  2011年   1篇
  2010年   1篇
  2009年   2篇
  2008年   2篇
  2000年   1篇
排序方式: 共有19条查询结果,搜索用时 31 毫秒
1.
Injury information for vehicle occupants from the body regions of the head, thorax, abdomen, and upper and lower extremities, due to the restraints and interior parts of the vehicle, were extracted from the 2009 ~ 2012 NASS/CDS database. For those cases with high occurrence frequency, a detailed and comprehensive data analysis was performed to find the relationship between the accident, occupant, vehicle, and injury data. A numerical frontal impact sled model with the Hybrid III dummy and the GHBMC human body model was constructed to simulate and identify those injury risks according to NASS/CDS. Among the 5,734 injuries to the aforementioned body regions from frontal crashes are, listed by frequency of occurrence, the lower extremity (27.8 %), upper extremity (21.3 %), thorax (15.1 %), face (10.9 %), spine (8.7 %), head (7.3 %), and abdomen (6.9 %). The main injury sources to the head were the windshield, side structure, and steering wheel. For the thorax and abdomen they were the seat belt and steering wheel. For the lower extremity it was the instrument panel. The main injury patterns for the head were the concussion and the contusion. For the thorax they were vessel laceration and lung contusion. For the abdomen they were laceration and contusion of the organs. For the lower extremity they were bone fracture and ligament rupture. The steering wheel and seat positions were main factors affecting head and thorax injury risks. From the sled impact simulation, high injury risks of the head and thorax were assessed respectively at conditions of steering column tilt down and rear most seat position, which correlated well with the findings from the NASS/CDS data analysis.  相似文献   
2.
This paper presents a fatigue design method for plug and ring type gas welded joints, which incorporates welding residual stress effects. A non-linear finite element analysis (FEA) was first performed to simulate the gas welding process. The numerically predicted residual stresses of the gas welds were then compared to experimental results measured using a hole drilling method. In order to evaluate the fatigue strength of the plug and ring type gas welded joints, a stress amplitude (σ a ) R taling the welding residual stress of the gas weld into account was introduced and is based on a modified Goodman equation incorporating the effect of the residual stress. Using the stress amplitude (σ a ) R , the ΔP-N f relations obtained from fatigue tests for plug and ring type gas welded joints having various dimensions and shapes were systematically rearranged into (σ a ) R -N f relations. It was found that the proposed stress amplitude (σ a ) R could provide a systematic and reasonable fatigue design criterion for the plug and ring type gas welded joints.  相似文献   
3.
Three visualization methods, Schlieren, Shadowgraph, and Mie-scattering, were applied to compare diesel and gasoline spray structures in a constant volume chamber. Fuels were injected into a high pressure/high temperature chamber under the same in-cylinder pressure and temperature conditions of low load in a GDCI (gasoline direct injection compression ignition) engine. Two injection pressures (40 MPa and 80 MPa), two ambient pressures (4.2 MPa and 1.7 MPa), and two ambient temperatures (908 K and 677 K) were use. The images from the different methods were overlapped to show liquid and vapor phases more clearly. Vapor developments of the two fuels were similar; however, different liquid developments were seen. At the same injection pressure and ambient temperature, gasoline liquid propagated more quickly and disappeared more rapidly than diesel liquid phase. At the low ambient temperature and pressure condition, gasoline and diesel sprays with higher injection pressures showed longer liquid lengths due to higher spray momentum. At the higher ambient temperature condition, the gasoline liquid length was shorter for the higher injection pressure. Higher volatility of gasoline is the main reason for this shorter liquid length under higher injection pressure and higher ambient temperature conditions. For a design of GDCI engine, it is necessary to understand the higher volatility of gasoline.  相似文献   
4.
Although fuel cost has been the largest portion of annual operating costs of construction equipment, it is possible to save the energy and reduce cost using fuel economy enhancement technology. In this study, an organic Rankine cycle is applied to an excavator in order to recover waste heat, reproduce it into electrical energy, and consequently reduce the fuel consumption by 10 %. A design process was carried out to develop an exhaust gas superheater that recovers the waste heat from exhaust gas through a composite-dimensional thermal flow analysis. A one-dimensional code was developed to perform a size design for the exhaust gas superheater. The ranges for the major design parameters were determined to satisfy the target of the heat recovery, as well as the pressure drop at both fluid sides. Performance analysis was done through onedimensional design code results, which were compared with three-dimensional CFD analysis. By utilizing a 3D commercial code, the arrangement of the tubes was selected and the working fluid pressure drop was reduced through a detailed layout design. The design procedure was verified by a performance evaluation of the prototype, which yielded only a 7 % tolerance in heat recovery.  相似文献   
5.
This study compares the optimum designs of center pillar assembly with advanced high-strength steel (AHSS) to that of conventional steel for crashworthiness and weight reduction in side impacts. A simplified side impact analysis method was used to simulate the crash behavior of the center pillar assembly with efficient computing time. Thickness optimization aims to perform an S-shaped deformation of the center pillar toward the cabin to reduce the injury level of a driver in a crash test. Center pillar members were regarded as an assembly of parts that are fabricated with tailor-welded blanks, and the thickness of each part was selected as a design variable. The thickness variables of parts that have significant effects on the deformation mechanism were extracted as the main design variables for thickness optimization based on the results of a sensitivity analysis with design of experiments. The optimization condition was constructed to induce an S-shaped deformation mode and reduce the weight of the center pillar assembly. An optimum design was obtained after several iterations with response surface methodology (RSM). Optimization was first performed with conventional steel and then with AHSS with the same procedure to optimize the crashworthiness of the center pillar assembly. After thickness optimization, optimum designs were applied to the full vehicle analysis to evaluate the validity of the optimization scheme with the simplified side impact analysis method. Then, the crashworthiness of optimum designs with conventional steel and AHSS were compared using the full vehicle analysis. This comparison demonstrates that AHSS can be more effectively utilized than conventional steel to obtain a lightweight design of an auto-body with enhanced crashworthiness.  相似文献   
6.
The warm shrink fitting process is generally used to assemble automobile transmission parts (shafts/gears). However, this process causes a deformation in the addendum and dedendum of the gear depending on the fitting interference and gear profile, and this deformation causes additional noise and vibration between the gears. To address these problems, the warm shrink fitting process is analyzed by considering the error in the dimensional deformation of the addendum and dedendum found when comparing the results of a theoretical analysis and finite element analysis (FEA). A correction coefficient that reduces this error is derived through an analysis of the difference in the cross-sectional area between the shapes used for the theoretical analysis and that of the actual gear, and a closed-form equation to predict the dimensional deformation of the addendum and dedendum is proposed. The FEA method is proposed to analyze the thermal-structural-thermal coupled field analysis of the warm shrink fitting process (heating-fitting-cooling process). To verify the closed-form equation using the correction coefficient, measurements are made of actual helical gears used in automobile transmissions. The results are in good agreement with those given by the closed-form equation.  相似文献   
7.
In the present analysis, several parameters used in a numerical simulation are investigated in an integrated study to obtain their influence on the process and results of this simulation. The parameters studied are element formulation, friction coefficient, and material model. Numerical simulations using the non-linear finite element method are conducted to produce virtual experimental data for several collision scenarios. Pattern and size damages caused by collision in a real accident case are assumed as real experimental data, and these are used to validate the method. The element model study performed indicates that the Belytschko-Tsay element formulation should be recommended for use in virtual experiments. It is recommended that the real value of the friction coefficient for materials involved is applied in simulations. For the study of the material model, the application of materials with high yield strength is recommended for use in the side hull structure.  相似文献   
8.
This paper presents a method to assess of fatigue strength for resistance spot welded joints, which incorporates welding residual stress effects. To achieve this, first, a non-linear finite element analysis (FEA) was performed to simulate the spot-welding process. To validate the FEA results, the numerically calculated welding residual stresses of spot welds were then compared with experimental results measured by X-ray diffraction method. The residual stress distributions showed good agreement between calculations and experiments. To evaluate the effects of welding residual stress on the fatigue design criterion of resistance spot welded joints subjected to cross-tension load, the stress amplitude (σa-res) taking into account welding residual stress at a spot weld was proposed based on a modified Goodman equation incorporating the residual stress effect. Using the stress amplitude σa-res at the nugget edge of a spot weld, the ΔP ? Nf relations obtained as the fatigue test results for spot welded joints were systematically rearranged to the σa-res ? Nf relation. It was found that the proposed stress amplitude (σa-res) provides more reasonable and accurate fatigue design criterion of spot welded joints subjected to cross-tension load.  相似文献   
9.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   
10.
Characteristics of wireless sensor network for full-scale ship application   总被引:2,自引:0,他引:2  
In this study, basic experiments regarding the wireless sensor network were conducted on a 3,000-ton-class training ship as the first step in applying the ubiquitous technology to a real ship. Various application fields of the technology in terms of the provision of safety and convenience on a ship were identified through these experiments. To efficiently adopt the ubiquitous technology for ship application, it is necessary to identify the state-of-the-art ubiquitous technology and to prepare countermeasures against the harsh environment of a ship. The characteristics of the wireless sensor network were investigated on a test bed ashore as well as on a real ship before full-scale ship application. In particular, experimental results concerning communication depth, data transmission ratio, and battery consumption in a sensor node are described in detail.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号