首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   40篇
  免费   0篇
公路运输   32篇
水路运输   4篇
综合运输   4篇
  2021年   1篇
  2018年   1篇
  2017年   5篇
  2016年   2篇
  2014年   6篇
  2013年   2篇
  2012年   7篇
  2011年   2篇
  2010年   4篇
  2009年   3篇
  2008年   4篇
  2007年   1篇
  2003年   1篇
  1997年   1篇
排序方式: 共有40条查询结果,搜索用时 15 毫秒
1.
Injury information for vehicle occupants from the body regions of the head, thorax, abdomen, and upper and lower extremities, due to the restraints and interior parts of the vehicle, were extracted from the 2009 ~ 2012 NASS/CDS database. For those cases with high occurrence frequency, a detailed and comprehensive data analysis was performed to find the relationship between the accident, occupant, vehicle, and injury data. A numerical frontal impact sled model with the Hybrid III dummy and the GHBMC human body model was constructed to simulate and identify those injury risks according to NASS/CDS. Among the 5,734 injuries to the aforementioned body regions from frontal crashes are, listed by frequency of occurrence, the lower extremity (27.8 %), upper extremity (21.3 %), thorax (15.1 %), face (10.9 %), spine (8.7 %), head (7.3 %), and abdomen (6.9 %). The main injury sources to the head were the windshield, side structure, and steering wheel. For the thorax and abdomen they were the seat belt and steering wheel. For the lower extremity it was the instrument panel. The main injury patterns for the head were the concussion and the contusion. For the thorax they were vessel laceration and lung contusion. For the abdomen they were laceration and contusion of the organs. For the lower extremity they were bone fracture and ligament rupture. The steering wheel and seat positions were main factors affecting head and thorax injury risks. From the sled impact simulation, high injury risks of the head and thorax were assessed respectively at conditions of steering column tilt down and rear most seat position, which correlated well with the findings from the NASS/CDS data analysis.  相似文献   
2.
We propose a method to determine the optimal initial location and to generate torch paths for a ship welding robot with 6 degrees of freedom (DOF). The optimal initial location is determined using an objective function, which is set up by combining constraints on the torch posture, manipulability, and the range of each joint angle to avoid collisions. A genetic algorithm (GA) is used to optimize the objective function because it does not require additional derivatives. After the initial location is determined, torch paths are generated by interpolating the starting point, endpoints and torch postures using inverse kinematics. Our method can be applied to automate the welding job for each block during ship building, irrespective of the shape of the robots, by changing the objective function.  相似文献   
3.
Speed limit is one of the essential factors associated with roadway safety. Spillover effect is the tendency of drivers to drive at a higher speed on relatively lower-speed non-freeway roadways after exiting higher-speed freeways. Speed studies were conducted on urban arterial roads with speed limits of 45 mph - all adjacent to freeways with speed limits of 55 mph and 70 mph. A comparison of speed differences between motorists who exited the freeway and those who were already driving on the arterial road was performed. Results showed that the mean speed and 85th percentile of passenger cars on arterials adjacent to 55 mph freeway were 47.3 and 51.1 mph, respectively, while the mean speed and 85th percentile of passenger cars on arterial adjacent to a higher speed 70 mph freeway were 49.5 and 53.4 mph, respectively. Differences in the mean speeds between vehicles exiting from freeways and vehicles already driving on the arterial road were observed at all four sites evaluated. This paper provides researchers, policymakers, and engineers with a better understanding of the effects of speed spillover on adjacent roads when determining whether to increase the speed limit on freeways.  相似文献   
4.
T-Hypoid gears are commonly used in rear-drive and 4WD (4 Wheel Drive) vehicle axles. Investigating their sensitivity to deflections is one of the most important aspects of their design and optimization procedures. Therefore, a deflection test was performed in this study in the actual gear mounting using completely processed gear. This test covered the full operating range of gear loads from “no load” to “peak load”. Under peak load, the contact pattern extended to the tooth boundaries without showing a concentration of the contact pattern at any point on the tooth surface. The transmission error was tested under an axle assembly triaxial-real-car-load condition.  相似文献   
5.
A sigma (σ)-coordinate ocean model by Blumberg and Mellor (POM) is applied to study the formation processes of mesoscale cyclones observed in the Eastern Gotland Basin following the dense water inflows. The initial conditions simulate a situation when the Arkona and Bornholm basins and partially the Slupsk Furrow are already filled with the inflow water of the North Sea origin, while the Eastern Gotland and Gdansk basins still contain the old water of pre-inflow stratification. Model runs with constant and time-dependent winds, changing the buoyancy forcing, grid geometry and bottom topography display the following. Entering the Eastern Gotland Basin from the Slupsk Furrow, the bottom intrusion of saline inflow water splits in two: one goes northeast towards the Gotland Deep, and second moves southeast towards the Gulf of Gdansk. An intensive mesoscale cyclonic eddy carrying the inflow water is generated just east of the Slupsk Furrow with the inflow pulse. A number of smaller cyclones with boluses of the inflow water are formed in the permanent halocline along the saline intrusion pathway to the Gotland Deep. Following Spall and Price [J. Phys. Oceanogr. 28 (1998) 1598], the cyclones are suggested to form by the adjustment of the high potential vorticity inflow water column to a low potential vorticity environment.  相似文献   
6.
Tire intelligence is vital in the improvement of the safety of vehicles because the tire supports the car body and is the contact point between the vehicle and the road. To create an intelligent tire, sensors must be installed to measure the behavior of the tire. However, it is difficult to apply a wired sensor system on the wheel of the tire. Hence, it is necessary to implement a self-powering, wireless system (a type of energy harvesting system) that can be mounted inside the tire. The purpose of this study is to convert the strain energy caused by deformation of the tire while driving into useful electrical energy to supply the sensor system. A flexible piezofiber is utilized for the energy conversion. The variation in strain, due to changes in speed, load, and the internal pressure of the tire, was measured along two axial directions to evaluate the amount of available strain energy. The amount of strain changed from 0.15% to 0.8%. To predict the amount of available energy from a tire, we perform an analysis of the relationship between the strain and the voltage. In addition, experiments for impedance matching between piezofiber and related circuits were conducted to optimize the external loads for transferring energy efficiently. Based on the procedure mentioned above, at least 0.58 mJ of electrical energy can be generated by using the laterally oriented strain (1500 to 2500 micro strain). The result of this study is expected to enhance the potential realization of self-generating wireless sensor systems for so-called ??intelligent?? tires.  相似文献   
7.
To comply with reinforced emission regulations for harmful exhaust gases, including carbon dioxide (CO2) emitted as a greenhouse gas, improved technologies for reducing CO2 and fuel consumption are being developed. Stable lean combustion, which has the advantage of improved fuel economy and reduced emission levels, can be achieved using a sprayguided-type direct-injection (DI) combustion system. The system comprises a centrally mounted injector and closely positioned spark plugs, which ensure the combustion reliability of a stratified mixture under ultra-lean conditions. The aim of this study is to investigate the combustion and emission characteristics of a lean-burn gasoline DI engine. At an excess air ratio of 4.0, approximately 23% improvement in fuel economy was achieved through optimal event timing, which was delayed for injection and advanced for ignition, compared to that under stoichiometric conditions, while NOx and HC emissions increased. The combustion characteristics of a stratified mixture in a spray-guided-type DI system were similar to those in DI diesel engines, resulting in smoke generation and difficulty in three-way catalystutilization. Although a different operating strategy might decrease fuel consumption, it will not be helpful in reducing NOx and smoke emissions; therefore, alternatives should be pursued to achieve compliance with emission regulations.  相似文献   
8.
This paper mainly focuses on the accurate estimation of the torque transferred through the engine clutch installed between the engine and the drive motor in parallel-type hybrid electric vehicles. The estimation of the engine clutch torque primarily relies on the forward-direction observer which uses the nominal engine net torque information. To overcome the limitation of using the nominal engine torque information that it may not be accurate during the transient states or due to the influence of external disturbance such as the road condition and wind, the forward-direction observer is supplemented by the use of reverse-direction observer which uses the driveline model and wheel speed measurements. In addition, the drive motor torque information is used to calibrate the nominal engine torque during the idle charging state, so that the driveline characteristic unique to parallel-type hybrid electric vehicle can be utilized to increase the estimation accuracy. Finally, the estimation performance of the designed observer is tested via simulation and experiments based on a real vehicle.  相似文献   
9.
Lane-changing events are often related with safety concern and traffic operational efficiency due to complex interactions with neighboring vehicles. In particular, lane changes in stop-and-go traffic conditions are of keen interest because these events lead to higher risk of crash occurrence caused by more frequent and abrupt vehicle acceleration and deceleration. From these perspectives, in-depth understanding of lane changes would be of keen interest in developing in-vehicle driving assistance systems. The purpose of this study is to analyze vehicle interactions using vehicle trajectories and to identify factors affecting lane changes with stop-and-go traffic conditions. This study used vehicle trajectory data obtained from a segment of the US-101 freeway in Southern California, as a part of the Next Generation Simulation (NGSIM) project. Vehicle trajectories were divided into two groups; with stop-and-go and without stop-and-go traffic conditions. Binary logistic regression (BLR), a well-known technique for dealing with the binary choice condition, was adopted to establish lane-changing decision models. Regarding lane changes without stop-and-go traffic conditions, it was identified based on the odd ratio investigation that he subject vehicle driver is more likely to pay attention to the movement of vehicles ahead, regardless of vehicle positions such as current and target lanes. On the other hand, the subject vehicle driver in stop-and-go traffic conditions is more likely to be affected by vehicles traveling on the target lane when deciding lane changes. The two BLR models are adequate for lane-changing decisions in normal and stop-and-go traffic conditions with about 80 % accuracy. A possible reason for this finding is that the subject vehicle driver has a tendency to pay greater attention to avoiding sideswipe or rear-end collision with vehicles on the target lane. These findings are expected to be used for better understanding of driver’s lane changing behavior associated with congested stop-and-go traffic conditions, and give valuable insights in developing algorithms to process sensor data in designing safer lateral maneuvering assistance systems, which include, for example, blind spot detection systems (BSDS) and lane keeping assistance systems (LKAS).  相似文献   
10.
Urea-SCR systems have been widely used in diesel vehicles according to the strengthened NOx (Nitrogen Oxides) emission standard. The NOx removal efficiencies of the latest well optimized urea-SCR system are above 90 % at moderate exhaust gas temperature of 250 ~ 450 °C. However, a large amount of NOx is emitted from diesel vehicles at cold start or urban driving conditions, when the exhaust gas temperature is not high enough for SCR catalyst activation. Although many researchs have been stuied to improve NOx conversion efficiency at these low temperature conditions, it is still one of important technical issues. In this study, the effect of UWS injection at low exhaust gas temperature conditions is studied. This study uses a 3.4 L diesel engine equipped with a commertial urea SCR system. As a result, it is found that about 5 % of NOx removal efficiency is improved in the NRTC test when UWS injection starts at the SCR inlet temperature of 150 °C compared to 200 °C. It is also found that urea deposits can be formed on the wall of exhaust pipe, when the local wall temperature is lower than temperature of urea decomposition.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号