首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
公路运输   9篇
水路运输   7篇
综合运输   7篇
  2019年   1篇
  2018年   3篇
  2017年   5篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2012年   4篇
  2011年   2篇
  2006年   2篇
  2005年   1篇
排序方式: 共有23条查询结果,搜索用时 46 毫秒
1.
In mode choice decision, travelers consider not only travel time but also reliability of its modes. In this paper, reliability was expressed in terms of standard deviation and maximum delay that were measured based on triangular distribution. In order to estimate value of time and value of reliability, the Multinomial and Nested Logit models were used. The analysis results revealed that reliability is an important factor affecting mode choice decisions. Elasticity is used to estimate the impacts of the different policies and system improvements for water transportation mode. Among these policies, decision maker can assess and select the best alternative by doing the benefit and cost analysis based on a new market share, the value of time, and the value of reliability. Finally, a set of promising policies and system improvement of the water transportation were proposed.  相似文献   
2.
This paper addresses the use of finite-element (FE) analysis to calculate the fatigue strength of a bogie frame, for the development of tilting trains in Korea. A multi-body dynamic analysis was performed to extract the load condition by tilting on curves. Using the results of the multi-body dynamic analysis and the load scenario setout in the UIC standard, FE analysis was performed to obtain the stress distribution and to calculate the fatigue strength. An attempt was made to minimize the weight of the bogie frame using a back-propagation artificial neural network (ANN). The results of this study reveal that the stresses at some nodes are near the fatigue limit in the Goodman diagram and by using back-propagation ANN, the weight of the bogie frame could be reduced by 4.7%.  相似文献   
3.
The hot stamping process has been used in the automotive industry to reduce the weight of the body-in-white and to increase passenger safety via improved crashworthiness. However, defects such as fracture and wrinkle occur when hot stamping is performed using a conventional drawing or forming method. In this study, a channel-type indirect blank holder (CIBH) is proposed to develop a high-strength center pillar in form-type hot stamping, so that the aforementioned drawbacks are overcome. This type of blank holder plays an important role in reducing severe wrinkling at the flange; such wrinkling leads to folding after the completion of form-type hot-stamping. First, we investigated the effect of the channel shape on the indirect blank holding force by using a simplified two-dimensional plane-strain stamping process. Second, we selected the slope angle and corner radius of the channel as the main shape parameters by finite element analysis and artificial neural network (ANN). It is known that fracture at the hot formed wall and wrinkle at the flange are significantly affected by the slope angle of the channel, and the appropriate value for eliminating fracture and wrinkle is determined to be 99°. By performing hot stamping using a form die with the selected channel, we can manufacture a high-strength center pillar without wrinkle and fracture.  相似文献   
4.
Walking has been highlighted as an independent transportation mode as well as an access/egress mode to/from public transit to encourage the use of more sustainable transport systems. However, walking does not seem to have priority over other transportation modes, especially in areas where various modes of movement are in conflict. The pedestrian push-button system seems to be a solution to distribute the right of way. The focus of this study is on the performance issue of the pedestrian push-button. Specifically, this study deals with issues related to mid-block crossings and attempts to answer two questions: whose waiting time is longer at pre-timed and push-button crossings, pedestrians, or vehicles? and which system – pre-timed or push-button – is better in terms of total waiting time? According to our simulation analyses, if the pedestrian flow rate is less than 120, 85, and 70 ped/h for two-, three-, and four-lane roads, respectively, the push-button system is recommended.  相似文献   
5.
In this paper, a robust sideslip angle controller based on the direct yaw moment control (DYC) is proposed for in-wheel motor electric vehicles. Many studies have demonstrated that the DYC is one of the effective methods to improve vehicle maneuverability and stability. Previous approaches to achieve the DYC used differential braking and active steering system. Not only that, the conventional control systems were commonly dependent on the feedback of the yaw rate. In contrast to the traditional control schemes, however, this paper proposes a novel approach based on sideslip angle feedback without controlling the yaw rate. This is mainly because if the vehicle sideslip angle is controlled properly, the intended sideslip angle helps the vehicle to pass through the corner even at high speed. On the other hand, the vehicle may become unstable because of the too large sideslip caused by unexpected yaw disturbances and model uncertainties of time-varying parameters. From this aspect, disturbance observer (DOB) is employed to assure robust performance of the controller. The proposed controller was realized in CarSim model described actual electric vehicle and verified through computer simulations.  相似文献   
6.
This research work presents fatigue life evaluation techniques for an automotive vehicle aluminum front subframe using virtual test simulation technology with nonlinear suspension components model. The technology was used for improving the accuracy of the polynomial model used in conventional analysis. The proposed nonlinear suspension components models were developed using direct approach. The effects of the nonlinear elements on the prediction of the fatigue life were also analyzed. Actual aluminum front subframe was tested using half-car road test simulator to verify the accuracy of the models. It was found that the proposed nonlinear models yield more accurate results than conventional polynomial models. The proposed virtual test simulation technology with nonlinear suspension components model can be used to predict fatigue life for vehicle chassis structures more accurately.  相似文献   
7.
In this paper we consider the performance evaluation of ship-berth link in port. The efficiency of operations and processes on the ship-berth link has been analysed through the basic operating parameters such as berth utilization, average number of ships in waiting line, average time that a ship spends in waiting line, average service time of a ship, average total time that a ship spends in port, average quay crane (QC) productivity and average number of QCs per ship. All the main performances of the ship-berth link are given. This is one of the problems faced by planners and terminal operators in ports. In this paper, we propose two models based on simulation and queuing theory, respectively, in order to determine the performance evaluation of ship-berth link in port. Numerical results and computational experiments are reported to evaluate the efficiency of the models for Pusan East Container Terminal (PECT).  相似文献   
8.
Recently, to improve vehicle fuel economy, as well as the performance of internal combustion engines, optimized system matching between a vehicle’s drivetrain and engine has become a very important technical issue. For this reason, the need for simulation research on engine and vehicle performance improvement has increased. But in general, since both engine simulation and vehicle simulation require initial engine calibration map input, a simple engine calibration method is required for the efficient configuration of various virtual engine calibration map setups. On this background, in this study, an example of waste gate turbocharger (WGT) cooled — exhaust gas recirculation (EGR) Diesel engine calibration using a test-based mean value engine model is presented as a suitable engine calibration map setting method. Also, the feasibility of an engine calibration model is confirmed through various engine tests. Using the simple model presented here, it is possible for diverse engine operating conditions and engine performance maps to be acquired.  相似文献   
9.
Abstract

Given that real-time bus arrival information is viewed positively by passengers of public transit, it is useful to enhance the methodological basis for improving predictions. Specifically, data captured and communicated by intelligent systems are to be supplemented by reliable predictive travel time. This paper reports a model for real-time prediction of urban bus running time that is based on statistical pattern recognition technique, namely locally weighted scatter smoothing. Given a pattern that characterizes the conditions for which bus running time is being predicted, the trained model automatically searches through the historical patterns which are the most similar to the current pattern and on that basis, the prediction is made. For training and testing of the methodology, data retrieved from the automatic vehicle location and automatic passenger counter systems of OC Transpo (Ottawa, Canada) were used. A comparison with other methodologies shows enhanced predictive capability.  相似文献   
10.
This paper provides two convergence criteria to find translational and rotational locations of the neutral axis plane (NAP) for intact and damaged vessels. Definition of three types of asymmetries of a ship section is proposed: material-, load-, and geometry-induced asymmetries. Concept of moment plane (MP) is introduced to define the heeling angle of ship section. It is suggested that force equilibrium and force vector equilibrium criteria are simultaneously necessary to determine new position of NAP due to both translational and rotational shifts. In order to verify the applicability of the convergence criteria, midship section of a VLCC is selected with two types of asymmetries: one is due to heeling of a section and the other due to hull damages. 0° and 30° heeling conditions and collision-induced and grounding-induced damage extents based on ABS Guides and DNV Ship Rules are taken into account. The various section properties are compared according to the area reduction ratios for each heeling and damage cases. It is shown that ultimate hull girder capacities are closely related to the area reduction due to the damages. Using new convergence criterion, mobility of NAPs and force centroids in elastic and inelastic regimes are visually provided.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号