首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   23篇
  免费   0篇
公路运输   14篇
综合类   1篇
水路运输   5篇
铁路运输   2篇
综合运输   1篇
  2018年   3篇
  2017年   5篇
  2016年   2篇
  2014年   1篇
  2013年   1篇
  2012年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2005年   1篇
  2003年   1篇
  2001年   1篇
  1996年   1篇
排序方式: 共有23条查询结果,搜索用时 132 毫秒
1.
There seem to be two types of ocean planning system in the world. First, the federal or united government suggests a basic framework of the plan which is followed by states, countries or areas as shown in the European Union, the United States, Canada, Australia, and so on. Second, a powerful central government prepares a basic ocean plan that guides the following sector plans of the relevant ministries. These cases are shown in Japan, Korea, and China. In Korea, the 2nd Ocean and Fishery Development Plan (OK21, 2011–2020) was made as a comprehensive ocean plan reflecting recent natural and social changes including global warming. The OK21 is declarative in its nature, and so evaluated by its sector plans, which have some specific implementing means such as budgets and manpower, organization, and so on, by the relevant laws. The 2nd OK21 is supported by 21 legally binding sector plans, 14 more than in the 1st plan, thus guaranteeing more effective implementation than in the 1st plan. In addition, most of sector plans are planned to be carried out through the well-coordinated system among the related ministries, thus showing a high degree of implementing efficiency of the plan. Every marine area in the plan, including marine environment, is being supported by more sector plans than before, indicating the equitable development of marine areas in the future. In sum, the 2nd OK21 is expected to show more implementing power due to the well-organized sector plans than in the 1st plan.  相似文献   
2.
针对目前铁道部有关加强行车安全的文件与设计概算编制规定不协调的问题,笔者提出了自己的看法.  相似文献   
3.
Time-variant ultimate longitudinal strength of corroded bulk carriers   总被引:3,自引:0,他引:3  
Many bulk carrier losses have been reported of late, and one of the possible causes of such casualties is thought to be the structural failure of aging hulls in rough weather. In aging ships, corrosion and fatigue cracks are the two most important factors affecting structural safety and integrity. This paper uses a set of the time-dependent corrosion wastage models for 23 different member locations/categories of bulk carriers previously developed by the authors, based on the available corrosion measurements for existing large bulk carrier structures. Differences due to the location and corrosion severity of every member type are taken into account. The nominal design corrosion values for the primary members are suggested based on the annualized corrosion rates obtained in the present study. The effect of time-variant corrosion wastage on the ultimate hull girder strength as well as the section moduli is studied. The criteria for repair and maintenance of heavily corroded structural members so as to keep the ultimate longitudinal strength at an acceptable level are discussed. Important insights and conclusions developed are summarized.  相似文献   
4.
Although fuel cost has been the largest portion of annual operating costs of construction equipment, it is possible to save the energy and reduce cost using fuel economy enhancement technology. In this study, an organic Rankine cycle is applied to an excavator in order to recover waste heat, reproduce it into electrical energy, and consequently reduce the fuel consumption by 10 %. A design process was carried out to develop an exhaust gas superheater that recovers the waste heat from exhaust gas through a composite-dimensional thermal flow analysis. A one-dimensional code was developed to perform a size design for the exhaust gas superheater. The ranges for the major design parameters were determined to satisfy the target of the heat recovery, as well as the pressure drop at both fluid sides. Performance analysis was done through onedimensional design code results, which were compared with three-dimensional CFD analysis. By utilizing a 3D commercial code, the arrangement of the tubes was selected and the working fluid pressure drop was reduced through a detailed layout design. The design procedure was verified by a performance evaluation of the prototype, which yielded only a 7 % tolerance in heat recovery.  相似文献   
5.
Although premixed charge compression ignition (PCCI) combustion engines are praised for potentially high efficiency and clean exhaust, experimental engines built to date emit more hydrocarbons (HCs) and carbon monoxide (CO) than the conventional machines. These compounds are not only strictly controlled components of the exhaust gas of road vehicles but are also an energy loss indicator. The prime objective of this study was to investigate the major sources of the HCs formed in the combustion chamber of an experimental PCCI engine in order to suggest some effective technologies for HC reduction. In this study, to explore the dominant sources of HC emissions in both operation modes, a single cylinder engine was prepared such that it could operate using either conventional diesel combustion or PCCI combustion. Specifically, the contributions of the top-ring crevice volume in the combustion chamber and the bulk quenching of the lean mixture were investigated. To understand the influence of the shape and magnitude of the crevice on HC emissions, the engine was operated with 12 specially prepared pistons with different top-ring crevices installed one after another. The engine emitted proportionally more HCs as the depth of the crevice increased as long as the width remained narrower than the prevailing quench distance. The top-ring-crevice-originated exhaust HCs comprised approximately 31% of the total HC emissions in the baseline condition. In a series of tests to estimate the effects of bulk quench on exhaust HC emissions, intake air was heated from 300K to 400K in steps of 25K. With the intake air heated, HC and CO emissions decreased with a gradually diminishing rate to zero at 375K. In conclusion, the most dominant sources of HC emissions in PCCI engines were the crevice volumes in the combustion chamber and the bulk quenching of the lean mixtures. The key methods for reducing HC emissions in PCCI engines are minimizing crevice volume in the combustion chamber and maximizing intake air temperature allowed based on the permissible NOx level.  相似文献   
6.
In the year 2011, the Particle Measurement Program (PMP) in Europe started the regulation of the diesel vehicle’s nano-sized particle number density (PN) due to its high degree of harm to the human body. Concretely, the standard level of PN emission was introduced in the Euro 5+ and 6 emissions regulation with a limit (<6.0 × 1011#/km) for diesel light-duty vehicle. Therefore, the determination of suitable and sophisticated instruments for reliable particle sampling and analysis was essential in taking exact experimental data. Now, among the PN emission measuring devices suggested by the PMP, condensation particle counter (CPC) is a key equipment for measuring the particle number density in real time and it has been used extensively. However, CPC can cause different results depending on operating conditions of the saturator and condensation that induce different rates of particle growth. This study was conducted to analyze the effect of CPC calibrated by a two-particle generator with spray and soot type methods applied on the nano-sized particle distribution’s parameters such as number concentration and linearity. Also, in order to ensure the reliability for particle sensor system named as PPS, which had emerged as a useful diagnostic to making spatially and temporally resolved quantitative measurements of diesel PN concentration, it was compared with calibrated CPC system. As a result, nano-sized particle measuring system with CPC calibrated by spray type particle generator had a much higher counting efficiency, indicating a larger nano size available than soot type particle generator. And, comparative experimental results on the correlation between the particle number of CPC to a reflectance PPS system showed that above 5,000 #/cm 3 in number concentrations measured by CPC as well as PPS were found to be similar with good linear relationship.  相似文献   
7.
Ever since vehicle noise, vibration, and harshness (NVH) reduction technology made dramatic improvements, vehicle interior noises represented by Squeak and Rattle (S/R) becomes an ever more important factor to improve the emotional quality of vehicles. Generally, people detect S/R noises on automotive interior parts, brake system, suspension, Body in White (BIW), etc. Among them, the rear-glass joint is a major source for vehicle interior noise, and can cause S/R noises under a variety of environmental and driving conditions. This study uses, two approaches, experimental and numerical approaches, to define the cause of S/R noise at the rear-glass section. Based on these two approaches, this study confirms that S/R noises generate through the contact between bottom side of molding and BIW. The sealant penetration length, panelmolding distance, and sealant width are the parameters affecting noise generation. In addition, this study created an optimal design with Design of Experiments (DOE) of the rear-glass joint. The design maximized the sealant penetration length, which is a parameter that majorly affects noise. The optimal design comprises of two steps: sealant injections shape optimization and rear-glass joint parameter optimization. Each step is carried out with FEA and validated by sealant penetration experiments. Through these optimizations, this study obtained an optimum combination of design parameters and fignificantly reduced the noise generated by rear-glass section.  相似文献   
8.
The effects of split injection, oxygen enriched air, and heavy exhaust gas recirculation (EGR) on soot emissions in a direct injection diesel engine were studied using the KIVA-3V code. When split injection is applied, the second injection of fuel into a cylinder results in two separate stoichiometric zones, which helps soot oxidation. As a result, soot emissions are decreased. When oxygen enriched air is applied together with split injection, a higher concentration of oxygen causes higher temperatures in the cylinder. The increase in temperature promotes the growth reaction of acetylene with soot. However, it does not improve acetylene formation during the second injection of fuel. As more acetylene is consumed in the growth reaction with soot, the concentration of acetylene in the cylinder is decreased, which leads to a decrease in soot formation and thus soot emissions. A combination of split injection, a high concentration of oxygen, and a high EGR ratio shows the best results in terms of diesel emissions. In this paper, the split injection scheme of 75.8.25, in which 75% of total fuel is injected in the first pulse, followed by 8°CA of dwell time, and 25% of fuel is injected in the second pulse, with an oxygen concentration of 23% in volume and an EGR ratio of 30% shows a 45% reduction in soot emissions, with the same NOx emissions as in single injection.  相似文献   
9.
Natural gas fuel, as an alternative energy source of transportation, has been used widely since it has an advantage of low emission levels. However, new technologies are required in order to meet the reinforced emission regulations. For this purpose, research into the development of hydrogen-compressed natural gas (HCNG) blend engine was carried out to evaluate its feasibility and emission characteristics. The Engine Research Department at the Korea Institute of Machinery and Materials carried out a large number of tests based on various parameter changes that could affect the performance and emission of HCNG engine in different operating conditions. An earlier stage of the research project focused on the lean combustion of a HCNG engine for heavy duty vehicles to meet the EURO-VI standards. An 11-L/6-cylinder CNG engine was used for the test. The effects of the excess air ratio change were assessed based on various content ratios of hydrogen in the natural gas fuel. In the later part of the HCNG research, a stoichiometric mixture operation was suggested to meet reinforced emission regulation without requiring a De-NOx system. Additionally, an exhaust gas recirculation (EGR) system was introduced for the purpose of improving thermal efficiency and durability. The optimal operating conditions were selected to achieve the best thermal efficiency to meet the required emission levels. In this paper, we demonstrate that a HCNG engine can achieve a significant decrease in NOx emissions, as compared to that of a CNG engine, while meeting the requirements of the EURO-VI standards during a transient mode cycle test. EGR can suppress the weakness of stoichiometric mixture combustion strategy, such as the deterioration of the durability and thermal efficiency, while the emission level can be lowered with the use of a three-way catalyst. The possibility of further reduction of emissions and CO2 with EGR was evaluated to access practical application of a HCNG engine in the field. From that evaluation, the HCNG engine with stoichiometric mixture operation for heavy duty vehicles was developed. The emission levels of HCNG engine were 50 % lower when compared to the EURO-VI standards with a greater than 10 % decrease in CO2 compared to that of a natural gas engine.  相似文献   
10.
At the initial design stage, for rapid evaluation of strength of ship structures, finite element analysis using beam elements is carried out as a rule. In beam modeling of ship structures, brackets are usually represented by rigid elements to simplify the analysis. The extent of rigid ends, which is called the span point, can be determined from the three kinds of view points, i.e., bending, shearing and axial deformation.

In this paper, a novel beam element is developed. The developed novel beam element, referred to as the rigid-ended beam element, can consider the effect of three kinds of span point within one element, which was impossible in modeling with the ordinary beam element. Calculated results agree with the exact solution for a cantilever beam and also with results obtained from finite element analysis using membrane elements. Structural analysis using the rigid-ended beam element is revealed to have good computing efficiency due to the elements not needing to correspond to the brackets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号