首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
公路运输   1篇
综合运输   1篇
  2023年   1篇
  2019年   1篇
排序方式: 共有2条查询结果,搜索用时 64 毫秒
1
1.
为探究地下交通转换平台内通风系统的合理布局,采用比尺模型试验和CFD模拟相结合的方法,研究射流风机和通风组织对地下交通转换平台内气流运动的影响。结果表明: 1)当联络通道内风机射流朝向敞开段时,为使风机升压系数Kj最大,630 mm、900 mm、1 120 mm射流风机的布设位置应距离敞开段分别大于40、50、65 m; 2)大口径射流风机具有更大的Kj,但占用的断面空间更大,且射流诱导段更长,应根据联络通道长度和高度合理选择射流风机口径; 3)地下交通转换平台的通风组织不宜采用同侧开启方式,采用对角抽吸方式时,联络通道内的污染物混入比最低、通风效率最高。  相似文献   
2.
为揭示顶排风口进/排风引发的隧道压力突变对分散排放隧道多风口通风特性的影响,采用计算流体力学方法对射流增压作用下成组顶排风口的进排风规律进行模拟。结果表明:顶排风口排风/进风会造成隧道内局部压力的突增/突降,分散排放隧道多个顶排风口的通风特性受射流增压、沿程阻力和风口通风引发的压力突变作用。风口间距是影响多风口风量变化的重要因素。对于排风型风口,当风口间距较小时,上游风口排风产生的压力突增将超过风口间的沿程损失,下游风口由于静压提升而排风量沿程递增;当风口间距较大时,压力突增将不足以克服风口间的沿程损失,下游风口排风量沿程递减,甚至转变为进风;对于进风型风口,风口进风量将在进风引起的压力突降和隧道沿程损失的叠加作用下沿程递增。相较于其他风机开启方式,开启风机与风口组呈交错位置关系是分散排放隧道更为高效的通风控制方式,可使隧道污染物浓度极值最小。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号