首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7篇
  免费   1篇
公路运输   8篇
  2021年   2篇
  2020年   2篇
  2019年   2篇
  2018年   1篇
  2016年   1篇
排序方式: 共有8条查询结果,搜索用时 15 毫秒
1
1.
通过UCWin Road Ver. 9驾驶模拟仿真平台,研究主线为直线的紧急避险车道渐变型服务车道的设置位置,以及制动床宽度对渐变型服务车道设置位置的影响。提取了最小转向半径、最大风险位置、起弯点、方向调整时间、转向角幅值指标,对5名男性驾驶员48次驶入避险车道的参数进行两因素方差分析,检验渐变型服务车道设置位置对上述指标的影响。研究结果表明:制动床宽度为9. 0 m且服务车道设置于制动床右侧时,车辆行驶稳定性强,驾驶员需要的引道长度短;制动床宽度为4. 5 m时,渐变型服务车道的设置位置对驾驶员驶入紧急避险车道的指标不存在显著影响。综合以上分析,渐变型服务车道宜设置于制动床右侧。  相似文献   
2.
3.
高速公路交通事故数据对管理部门提升道路交通安全具有重要意义。为研究贵州省某两条高速公路历史交通事故数据分布规律与事故发展趋势,首先利用邻近度与关联性分析方法,完善事故数据;然后分析道路特征对交通安全的影响,划分连续下坡路段、隧道路段单元范围;最后对路段单元进一步划分为区块,建立不同区块范围内的事故概率与区块位置的预测模型,其中连续下坡路段后半段符合线形关系,隧道进出口段符合二次函数关系,并根据事故分布特征提出改善方案,进而辅助管理者掌握不同特征路段未来可能发生交通事故的路段范围以及改善的优先级。  相似文献   
4.
5.
路面结冰、积水导致行车性能下降极易诱发交通安全问题,而其造成交通事故的主要致因是路面湿滑性能的改变。利用陆地交通气象灾害防治技术国家工程实验室的维萨拉遥感道面状态传感器、温湿度传感器、摆式仪、红外热像仪采集两种典型路面结构AC—16、OGFC—16表面冰水混合物的冰层厚度、水膜厚度、摩擦系数、环境温度、冰层表面温度参数。利用SPSS软件通过方差分析、多元线性回归分析研究典型路面结构冰水混合物附着条件下湿滑性能的影响因素与定量关系。研究表明,AC—16路面冰水混合物附着条件下摩擦系数与冰层厚度呈线性正相关,与冰层表面温度分别呈现线性负相关(低于-3℃)和线性正相关(-3~0℃);OGFC—16路面冰水混合物附着条件下摩擦系数与水膜厚度呈线性负相关,与冰层厚度、冰层表面温度的关系和AC—16路面一致。  相似文献   
6.
覆冰条件下路面行车性能下降极易诱发交通安全问题,引发交通事故的根本原因是胎面-路面接触界面的摩擦性能的改变。该文根据路表构造深度特征,理论分析薄层冰路面、厚层冰路面条件下摆值的适用性,并于陆地交通气象灾害防治技术国家工程实验室开展室内模拟试验,利用维萨拉遥感道面状态传感器、摆式仪采集不同覆冰路面结构的冰层厚度、冰层表面温度及摆值,分析覆冰路面摩擦性能的影响因素,通过回归分析方法建立薄层冰路面摩擦系数与冰层厚度、厚层冰路面摩擦系数与冰层表面温度的关系模型。结果表明:薄层冰路面摆值与冰层厚度间呈二次函数关系;对于厚层冰路面,其摆值与冰层表面温度亦呈二次函数关系。  相似文献   
7.
针对公路罩面导致的路侧波形梁护栏防护高度不足,研究并提出了基于内套管节点加高法的波形梁护栏加高改造方案,该方案可实现护栏随路面升高调节高度。采取HyperMesh和LS-DYNA联合仿真的方式开展了皮卡车、货车的有限元仿真试验对该种加高方案的可行性进行验证。通过对车辆重心加速度、车辆重心速度、车辆驶出角度、护栏最大动态变形量4个指标对护栏的防撞性能进行评价。通过各指标的分析结果以及对加高方案的阻挡功能、缓冲功能、导向功能、吸能作用的综合评价,证明了经过内套管节点加高法改造后的护栏满足B级波形梁护栏标准,适用于我国现行公路旧有波形梁护栏改造。  相似文献   
8.
为了给设置于左转圆曲线处的避险车道流出角与引道长度设置提供参考,针对山区高速公路广泛采用的9.0 m宽制动床避险车道,考虑左转圆曲线半径和驶入速度的影响,进行了不同流出角度与引道长度的驾驶仿真试验研究。采用UC-win Road 9.0驾驶仿真平台,获取了不同场景下16名男性B照驾驶人由主线驶入紧急避险车道过程中的车辆运行特征数据。采用拟合回归的方法,分析了圆曲线半径和驶入速度对方向调整时间、最小转向半径、方向盘转角幅值、方向盘转角频率的影响,建立了各指标与圆曲线半径的定量回归关系模型,并对比了主线为直线时的试验结果。采用二阶聚类的方法对不同圆曲线半径条件下的引道与流出角度的设置水平进行分类,获取了适宜设置避险车道的初步条件。根据车辆的行驶稳定性,确定了左转圆曲线处避险车道流出角与引道的设计标准。研究结果表明:左转圆曲线处避险车道的流出角受圆曲线半径的影响,引道长度受圆曲线半径与驶入速度的影响;主线半径1 000 m及以上,流出角0°~5°,引道为6 s设计行程,流出角5°~10°,引道为9 s设计行程;条件困难时,紧急避险车道可设置于半径600~1 000 m的曲线处,流出角0°~5°,引道为9 s设计行程,流出角5°~15°,引道为12 s设计行程。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号