首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   9篇
  免费   0篇
公路运输   9篇
  2018年   1篇
  2016年   2篇
  2015年   1篇
  2007年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  1996年   1篇
排序方式: 共有9条查询结果,搜索用时 515 毫秒
1
1.
In the pursuit of an objective rating on vehicle stability performance, it is always desirable to reduce disturbances and inconsistencies during experimental evaluations, especially the ones introduced by human drivers. This paper presents the development of a steering robot designed for closed-loop steering tasks during evasive manoeuvres. It describes the controller structure and discusses experimental results, in addition to simulation/vehicle model verifications and theoretical control analysis.  相似文献   
2.
In this article, two kinematics-based observers are proposed to estimate the vehicle roll and pitch angles by using an inertial measurement unit. The observers are mathematically proven to be stable if the vehicle yaw rate is not zero. With a design variation of the observer gains, the estimated roll or pitch angle is shown to further asymptotically converge to the true value, eliminating possible errors caused by the biases of the acceleration signals. Simulation results show that accurate estimation of both pitch and roll angles can be achieved without the help of external sensors such as global positioning systems, either by using the accelerometer-based reference pitch or roll angle as the maneuver varies, or by using an observer with zero steady-state error property.  相似文献   
3.
Researchers have proposed various active suspension concepts to optimize the tradeoff between ride and handling in passenger vehicles. A few investigators suggested inclusion of the passenger jerk, the derivative of the passenger acceleration, as a measure of ride quality in the performance index. Minimization of a performance index then optimizes both the acceleration and jerk as well as other outputs representing handling quality and design constraints. This approach is called jerk optimal control.

This paper compares two different vehicle models of increasing complexity (the one and two DOF quarter car) using jerk optimal control. Different aspects of suspension performance are investigated, including the structure of the system transfer functions, the structure of the force control laws, and the tradeoffs between the various root mean square (rms) outputs defining system ride and handling performance. Tables compare the numerical results of the two models, allowing predictions of actual vehicle performance.

The results of the two models show the same basic trend for the tradeoff between ride and handling quality: at a constant level of rms passenger acceleration the rms passenger jerk can be reduced significantly, but only at a cost of increased rms tire deflections. In physical terms, a softer ride results in degraded handling performance. For a chosen level of ride improvement, the more realistic two DOF quarter car model predicts more severe degradation of handling. The latter nevertheless predicts a substantial increase in vehicle ride quality is possible through a 55% reduction in jerk. It is expected that actual suspensions could also produce significant increases in ride quality through jerk reduction. Jerk optimal suspensions could find use both in higher end passenger vehicles and in transports for vibration sensitive cargo.  相似文献   
4.
Active suspension is commonly considered under the framework of vertical vehicle dynamics control aimed at improvements in ride comfort. This paper uses a collocation-type control variable optimisation tool to investigate to which extent the fully active suspension (FAS) application can be broaden to the task of vehicle handling/cornering control. The optimisation approach is firstly applied to solely FAS actuator configurations and three types of double lane-change manoeuvres. The obtained optimisation results are used to gain insights into different control mechanisms that are used by FAS to improve the handling performance in terms of path following error reduction. For the same manoeuvres the FAS performance is compared with the performance of different active steering and active differential actuators. The optimisation study is finally extended to combined FAS and active front- and/or rear-steering configurations to investigate if they can use their complementary control authorities (over the vertical and lateral vehicle dynamics, respectively) to further improve the handling performance.  相似文献   
5.
The use of advanced dynamic friction models can improve the brush-type tire friction models. This paper presents a 3D dynamic brush model based on the LuGre friction model. The model describes the dynamics of longitudinal and lateral tire friction forces, as well as the self aligning torque dynamics. It has been originally derived in a distributed-parameter form, and then transformed to a simpler lumped-parameter form with only three internal states. Both uniform and non-uniform normal pressure distributions are considered. The model has analytical solution for steady-state conditions. The steady-state behavior is validated with respect to “magic” formula static model, which served as an “ideal” benchmark. The lumped model dynamic behavior is validated by comparing its time-responses with original distributed model responses. The model parameterization with respect to normal force and other tire/road parameters is considered as well.  相似文献   
6.
A collocation-type control variable optimisation method is used to investigate the extent to which the fully active suspension (FAS) can be applied to improve the vehicle electronic stability control (ESC) performance and reduce the braking distance. First, the optimisation approach is applied to the scenario of vehicle stabilisation during the sine-with-dwell manoeuvre. The results are used to provide insights into different FAS control mechanisms for vehicle performance improvements related to responsiveness and yaw rate error reduction indices. The FAS control performance is compared to performances of the standard ESC system, optimal active brake system and combined FAS and ESC configuration. Second, the optimisation approach is employed to the task of FAS-based braking distance reduction for straight-line vehicle motion. Here, the scenarios of uniform and longitudinally or laterally non-uniform tyre–road friction coefficient are considered. The influences of limited anti-lock braking system (ABS) actuator bandwidth and limit-cycle ABS behaviour are also analysed. The optimisation results indicate that the FAS can provide competitive stabilisation performance and improved agility when compared to the ESC system, and that it can reduce the braking distance by up to 5% for distinctively non-uniform friction conditions.  相似文献   
7.
8.
This survey paper aims to provide some insight into the design of suspension control system within the context of existing literature and share observations on current hardware implementation of active and semi-active suspension systems. It reviews the performance envelop of active, semi-active, and passive suspensions with a focus on linear quadratic-based optimisation including a specific example. The paper further discusses various design aspects including other design techniques, the decoupling of load and road disturbances, the decoupling of pitch and heave modes, the use of an inerter as an additional design element, and the application of preview. Various production and near production suspension systems were examined and described according to the features they offer, including self-levelling, variable damping, variable geometry, and anti-roll damping and stiffness. The lessons learned from these analytical insights and related hardware implementations are valuable and can be applied towards future active or semi-active suspension design.  相似文献   
9.
A collocation-type control variable optimisation method is used in the paper to analyse to which extent the fully active suspension (FAS) can improve the vehicle ride comfort while preserving the wheel holding ability. The method is first applied for a cosine-shaped bump road disturbance of different heights, and for both quarter-car and full 10 degree-of-freedom vehicle models. A nonlinear anti-wheel hop constraint is considered, and the influence of bump preview time period is analysed. The analysis is then extended to the case of square- or cosine-shaped pothole with different lengths, and the quarter-car model. In this case, the cost function is extended with FAS energy consumption and wheel damage resilience costs. The FAS action is found to be such to provide a wheel hop over the pothole, in order to avoid or minimise the damage at the pothole trailing edge. In the case of long pothole, when the FAS cannot provide the wheel hop, the wheel is travelling over the pothole bottom and then hops over the pothole trailing edge. The numerical optimisation results are accompanied by a simplified algebraic analysis.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号