首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   1篇
公路运输   1篇
综合运输   1篇
  2016年   1篇
  2014年   1篇
排序方式: 共有2条查询结果,搜索用时 218 毫秒
1
1.
Traffic congestion has become a major challenge in recent years in many countries of the world. One way to alleviate congestion is to manage the traffic efficiently by applying intelligent transportation systems (ITS). One set of ITS technologies helps in diverting vehicles from congested parts of the network to alternate routes having less congestion. Congestion is often measured by traffic density, which is the number of vehicles per unit stretch of the roadway. Density, being a spatial characteristic, is difficult to measure in the field. Also, the general approach of estimating density from location-based measures may not capture the spatial variation in density. To capture the spatial variation better, density can be estimated using both location-based and spatial data sources using a data fusion approach. The present study uses a Kalman filter to fuse spatial and location-based data for the estimation of traffic density. Subsequently, the estimated data are utilized for predicting density to future time intervals using a time-series regression model. The models were estimated and validated using both field and simulated data. Both estimation and prediction models performed well, despite the challenges arising from heterogeneous traffic flow conditions prevalent in India.  相似文献   
2.
The travel decisions made by road users are more affected by the traffic conditions when they travel than the current conditions. Thus, accurate prediction of traffic parameters for giving reliable information about the future state of traffic conditions is very important. Mainly, this is an essential component of many advanced traveller information systems coming under the intelligent transportation systems umbrella. In India, the automated traffic data collection is in the beginning stage, with many of the cities still struggling with database generation and processing, and hence, a less‐data‐demanding approach will be attractive for such applications, if it is not going to reduce the prediction accuracy to a great extent. The present study explores this area and tries to answer this question using automated data collected from field. A data‐driven technique, namely, artificial neural networks (ANN), which is shown to be a good tool for prediction problems, is taken as an example for data‐driven approach. Grey model, GM(1,1), which is also reported as a good prediction tool, is selected as the less‐data‐demanding approach. Volume, classified volume, average speed and classified speed at a particular location were selected for the prediction. The results showed comparable performance by both the methods. However, ANN required around seven times data compared with GM for comparable performance. Thus, considering the comparatively lesser input requirement of GM, it can be considered over ANN in situations where the historic database is limited. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号