首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   19篇
  免费   9篇
公路运输   18篇
综合类   8篇
铁路运输   2篇
  2023年   2篇
  2022年   5篇
  2021年   3篇
  2019年   1篇
  2018年   1篇
  2014年   2篇
  2011年   1篇
  2010年   1篇
  2009年   3篇
  2008年   3篇
  2007年   3篇
  2006年   1篇
  2000年   1篇
  1999年   1篇
排序方式: 共有28条查询结果,搜索用时 205 毫秒
1.
混凝土箱形截面梁随火灾场温度的升高,高温度区会穿透混凝土薄壁层,致使箱梁的有效区域完全破坏,混凝土箱形截面的等温线分布比实心截面等温线偏高;整跨受热模式下钢筋混凝土简支箱梁跨中挠度时程曲线随荷载等级的增加呈非线性变化趋势,挠度时程曲线增大的程度随保护层厚度增加而减小,延火时间对钢筋混凝土简支梁跨中挠度有较大影响.因此,控制火灾时间或者提高混凝土保护层厚度,可有效控制火灾高温场钢筋混凝土桥梁的挠度值.  相似文献   
2.
多肋火灾下混凝土T形梁桥实体剪力滞比研究   总被引:1,自引:0,他引:1  
为研究多肋火灾下混凝土T形梁桥的剪力滞变化规律,以横桥向5片T形梁组成的混凝土简支梁桥为背景进行分析。采用ANSYS建立混凝土T形梁桥多肋火灾模型,分析多梁肋在对称火荷载作用下,混凝土T形梁桥实体剪力滞比的变化特征。结果表明:所有梁肋受火时,随火温持续时间的延增,剪力滞比呈指数曲线趋势逐渐增加,且处于负剪力滞分布状态;单侧半跨5片梁肋受火,火温持续时间在20min内时,剪力滞比变化明显,火温持续时间在20~60min时,剪力滞比基本回至初值,且随火温持续时间的延增,剪力滞比时程曲线逐渐向初始状态靠拢,走势平坦;桥跨方向非连续梁肋受火,近火梁肋剪力滞比显著。  相似文献   
3.
自动驾驶汽车混合A*算法运行迅速,但是难以保证曲率的连续性和汽车舒适度,并且不能保证优化后的结果无碰撞。针对以上问题,以提高汽车舒适性为目的,基于最小冲击度对A*算法进行优化,在MATLAB和栅格地图中进行了算法预研,解决了低速场景下自动驾驶汽车运动过程中舒适度不足的问题。然后,针对优化算法可能导致轨迹碰撞的问题,对优化算法进行了改进,保证了汽车的安全性,并给出了“走廊”自动调整的策略。仿真结果表明:优化后的轨迹无碰撞且曲率更小,加速度不超出正常范围,可以满足正常驾驶需求。  相似文献   
4.
交通类火灾严重威胁钢结构桥梁的耐久性和安全性。为提升复杂环境(开放火灾和弯桥荷载)下连续弯钢箱梁的耐火性能,增强钢结构桥梁的安全服役寿命,选取大型立交桥枢纽工程中两跨连续弯钢箱梁为研究对象,通过建立耐火试验验证的钢箱梁与混凝土刚性基层协同工作的数值预测模型,深入揭示开放环境碳氢火灾下传热模式和结构特征耦合的箱梁力学行为演化规律。研究了局部环境火灾作用下结构的高温响应与失效模式,分析了复杂荷载状况、弯曲半径与支座布置方式对连续弯钢箱梁火灾响应行为的影响,提出了复杂环境下连续弯钢箱梁的耐火性能提升方法。研究结果表明:连续弯钢箱梁在火灾下的内外侧挠度差值不断增大,主梁内外侧支座反力的变化呈相反趋势,并且在受火初期支座反力变化程度剧烈;受火区域边缘靠近中支点的底板与腹板严重屈曲从而先形成塑性铰,然后在受火跨跨中形成塑性铰,随即整跨结构发生突然性垮塌;荷载水平的增大会显著缩短其耐火极限,受火前期及时撤离桥上的车辆荷载能够有效地延缓变形发展并且避免结构的突然性垮塌;曲率半径小于200 m会显著加剧连续弯钢箱梁高温下的弯扭耦合效应,增大主梁内外侧挠度差值与内外侧支座反力变化幅度,削弱火灾下结构的整体稳定性能;在钢结构桥梁抗火设计时中支点应设置抗扭支座,常温下支座的布置方式对火灾下连续弯钢箱梁的支座受力状况改善甚微,应在支座与梁端附近增设外部限位装置以防止结构变形过大。研究结论可为提升复杂环境下钢结构桥梁抵抗火灾的能力以及增强安全服役寿命提供设计依据。  相似文献   
5.
为研究火灾下具有板式橡胶支座支承条件的连续体系多室钢箱结构桥梁的高温响应,设计并制作了两榀两跨连续双室钢箱结构模型试验梁,对其开展了跨中区域与负弯矩区域的耐火试验。采用横向偏位加载实现弯扭耦合作用效应,制作了板式橡胶支座以研究火灾过程中支座性能的退化。通过试验获取了双室钢箱梁的截面温度分布特征、高温变形规律、钢梁屈曲模式以及裂缝开展过程,探析了火灾后钢材与橡胶支座的性能;然后建立了数值分析模型进行验证,结合模型计算剖析了其内力重分布规律与破坏过程,分析了负弯矩区功能失效路径,并开展了参数对比分析,揭示了连续钢箱梁抗火性能演变机理。研究结果表明:火灾下双室钢箱梁中腹板与边腹板的最大温差超过160℃,截面温度梯度分布受火灾强度的影响较大;单跨受火时受火跨持续下挠,而非受火跨先上拱后下挠,中支点受火时仅在末期出现位移激增,弯扭-高温耦合作用下双室钢箱梁出现随受火时间明显增长的横向扭转变形,破坏时截面两侧的挠度差值达到94 mm;连续钢箱梁在受火前期会发生剧烈的内力重分布,负弯矩区急剧扩大,中支座反力骤增至常温时的2倍以上;单跨受火时钢箱梁破坏状态表现出随着中支点附近的塑性扩展最终发展至受火跨...  相似文献   
6.
郑斐  郭琦  张岗 《华东公路》2007,(6):33-36
大跨径拱桥采用有支架现浇施工方案时,支架自身的稳定性是工程建设的关键问题。为验证大跨径拱桥支架现浇施工的可行性,该文通过一工程实例,以实际中心压杆的弹塑性弯曲稳定理论和杆件系统弹性稳定的有限元理论对该桥两种施工方案的支架稳定性进行了验算分析。计算结果表明,支架方案合理可行,支架各部分受力满足规范要求。  相似文献   
7.
火灾高温下RC简支梁极限弯矩计算模型研究   总被引:1,自引:0,他引:1  
通过截面力学平衡原理,引人火灾高温下混凝土和钢筋强度折减系数,给出截面有效分布宽度,推导得有效力矩法及相应力矩时效系数计算方法,建立火灾高温下钢筋混凝土简支梁极限弯矩的实用计算模型,与有限元分析数据进行对比,结果吻合.研究表明:保护层厚度对钢筋混凝土简支梁极限弯矩影响较大,钢筋混凝土简支梁极限弯矩随保护层厚度的增加呈线性递增关系,该计算方法可行.  相似文献   
8.
为研究预应力混凝土(PC)桥梁遭遇燃油火灾时的耐火性能,设计制作了3榀大比例PC简支缩尺模型试验薄腹梁,包括1榀箱形截面梁和2榀双T形截面梁,以荷载水平和截面类型为试验参数,开展了燃油火灾升温条件下PC梁局部受火试验。获取了梁截面混凝土温度和预应力钢束温度变化、跨中挠度变化、有效预应力衰变、裂缝开展、爆裂分布与深度以及耐火极限相关试验数据,深入探索了燃油火灾高温下PC梁的损伤演化规律和破坏模式。试验结果表明:梁截面各测点温度在受火期间随着受火时间的增加其整体趋势不断升高,由于水分的蒸发造成温度曲线在100 ℃~120 ℃之间有一明显的缓平段,箱形截面梁箱内温度在达到100 ℃后几乎保持不变。停火后,混凝土内部和预应力钢束温度持续升高,距受火面距离越远,在停火后升温持续时间越长,预应力钢束在停火后最高升温161 ℃。火灾下PC梁挠曲变形分为受火初期显著增长、受火中期缓慢增长和受火后期急速增长3个阶段,最终由于预应力钢束断裂表现出明显的脆性破坏特征。按常温下适筋梁设计的PC模型试验梁在火灾高温下呈现为少筋梁破坏特征;钢束的有效预应力在火灾高温下表现出先增加、后衰减,最后被拉断应力突然降低的三阶段变化特性。箱形闭口截面梁的混凝土温度和预应力钢束温度均低于双T形开口截面梁,其耐火性能明显优于双T形开口截面梁,破坏时预应力钢束临界温度分别为397 ℃和319 ℃。荷载水平由0.35增加至0.55时,火灾下PC梁耐火极限降低21%,破坏时预应力钢束临界温度由416 ℃降低至319 ℃。研究成果可为PC桥梁耐火试验提供方法指导,为其抗火设计和灾后应急提供理论依据。  相似文献   
9.
本文针对国内某款柴油机活塞在售后市场上较大范围出现活塞开裂穿孔等失效问题,对柴油机活塞内冷油道位置及结构尺寸进行优化设计,采用ANSYS软件对优化方案进行CA E模拟分析,通过对活塞温度及温度-结构耦合应力结果对比分析研究,对柴油机活塞内冷油道进行设计优化,通过台架试验和市场应用验证,有效降低了柴油机活塞开裂穿孔等失效风险和售后市场赔偿率。  相似文献   
10.
钢结构桥梁形式多样,优点突出,在世界各地应用广泛,为了推进中国钢结构桥梁的建设,促进中国钢结构桥梁抗火防灾研究领域的全面发展,加快钢结构桥梁抗火防灾技术的研究,加强钢结构桥梁抵抗火灾的能力,提升管理部门应对钢结构桥梁遭遇火灾时的应急水平,对钢结构桥梁抗火防灾的研究现状与亟待解决的问题进行了总结。研究了国内外钢结构桥梁火灾发生时的场景以及钢结构桥梁遭遇火灾时的破坏形态,分析了钢结构桥梁火灾发生时的特点,强调了油罐车火灾对钢结构桥梁安全性能的严重威胁,给出了钢结构桥梁抗火防灾的关键技术。继而,对其抗火研究存在的问题进行了梳理,包括钢结构桥梁所用材料的高温特性,复杂环境下钢结构桥梁截面的传热机制、钢-混凝土组合梁界面间的高温作用机理、钢结构桥梁火灾行为的数值模拟与智能预测技术、火灾全过程中钢结构桥梁的试验与测试方法、火灾高温下钢结构桥梁的力学行为以及钢结构桥梁抗火研究的工程应用等七大方面给出了钢结构桥梁抗火研究亟待解决的问题和更高的目标。以期对钢结构桥梁抗火防灾方向的技术研究提供全新的视角和基础资料。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号