首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1篇
  免费   4篇
公路运输   3篇
综合类   2篇
  2023年   1篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
排序方式: 共有5条查询结果,搜索用时 15 毫秒
1
1.
为克服传统桥梁有限元模型修正迭代优化过程中存在的局部收敛和提高模型修正精度, 提出了联合实数编码遗传算法与静动力实测数据的有限元模型修正方法; 引入四边形等参元理论和牛顿迭代法编制宏命令, 实现有限元模型中车辆荷载的快速自动加载; 基于结构有限元模型静动力特性构造目标函数, 以实数编码遗传算法为优化策略, 采用MATLAB平台建立了有限元模型修正框架; 通过对一个简支框架结构的数值模拟, 对比了所提出优化方法与其他方法的收敛效率和修正结果, 以验证所提出方法的有效性; 采用拉丁超立方体抽样分析了有限元模型参数变化对桥梁动力响应的影响, 以确定待修正参数, 并采用所提方法修正了一座改建的空心板桥梁的实体有限元模型。分析结果表明: 零阶算法和一阶算法对参数的敏感性和修正范围依赖大, 选用敏感性较小的参数或者参数修正范围大于50%将会导致错误的修正结果; 实数编码遗传算法对初始输入不敏感, 可避免局部收敛的情况; 采用灵敏度分析得到的主要待修正参数有空心板弹性模量、现浇层弹性模量以及支座横桥向和顺桥向的约束刚度; 修正后的空心板弹性模量增幅约为19.13%, 现浇层弹性模量增幅约为16.00%, 横向约束刚度增幅约为46.21%, 纵向约束刚度增幅约为72.72%, 修正后的有限元模型的静动力特性与实测响应吻合良好, 各测点静力响应误差均小于4%, 动力响应误差小于3%。   相似文献   
2.
为动态仿真与评估运营阶段风和随机车流联合作用下大跨钢桁悬索桥伸缩缝纵向变形, 建立了风-随机车流-钢桁悬索桥分析系统; 基于已有单主梁风-车-桥耦合振动分析系统, 引入弹簧单元模拟伸缩缝, 并从车-桥耦合关系和钢桁梁横断面风荷载精细化加载2个方面将分析系统从单主梁提升为梁格法; 基于监测数据仿真重现了交通流荷载, 采用建立的分析系统计算了一座典型大跨钢桁悬索桥伸缩缝在随机车流作用下的动态位移时程响应, 获取并验证了累计位移与交通流质量的相关关系; 以滑动支承耐磨材料厚度为评估指标确定了伸缩缝累计位移临界值, 评估了伸缩缝的正常工作寿命; 在不同风速和随机车流作用下对伸缩缝纵向变形性能进行了参数敏感性分析。分析结果表明: 伸缩缝在随机车流作用下的时位移极值远小于设计允许伸缩范围-880~880 mm; 伸缩缝累计位移与其对应时段内的交通流荷载具有正相关性; 在风与随机车流联合作用下, 风速小于15 m·s-1时, 影响伸缩缝纵向变形的主要荷载因素为随机车流, 风速大于15 m·s-1时, 主要荷载因素为风荷载; 伸缩缝时位移极值与时累计位移随风速的增大均呈增大趋势; 当风速增大至20 m·s-1时, 风荷载产生的伸缩缝纵向变形近似为车流荷载下的2倍; 建立的风-随机车流-钢桁悬索桥分析系统可为运营荷载下伸缩缝纵向变形的动态仿真与性能评估提供数值分析平台。   相似文献   
3.
为实现同时考虑车载过程及抗力劣化进程非平稳性的在役混凝土桥梁构件时变可靠性评估,首先,联合时域内的动态广义极值分布模型及蒙特卡洛模拟实现对连续非平稳车载过程的极值建模,介绍基于Gamma过程的在役混凝土桥梁构件抗力非平稳劣化模型的建立及更新;其次,综合考虑边际救生成本准则、个体风险准则及社会风险准则对运营阶段目标可靠度指标取值进行讨论,为时变可靠性评估提供基准安全边界;最后,在基于风险函数的时变可靠性分析方法框架之下建立同时考虑车载及抗力非平稳性的时变可靠性分析方法,其中借助高斯数值积分及泰勒级数展开解决时变可靠性的求解问题,并采用一个实桥分析案例对上述分析流程的应用进行说明。研究结果表明:当荷载参数截口分布呈现多峰形态时,可采用广义极值分布函数族中的极值Ⅰ型分布对其年最大分布进行描述;交通量的持续增长将导致变量年最大分布位置参数的不断提升及尺度参数的不断下降;综合考虑3种可靠度指标分析准则,建议在役混凝土桥梁构件运营阶段年目标可靠度指标取为3.98,具体评估工作中不能忽略基准期对目标可靠度指标的影响;通过时变可靠性评估工作的开展,可获取构件在未来较长服役期内可靠度指标的变化情况、服役状态达到临界安全水平所对应的时间节点以及构件可靠性冗余度的时变情况;该类结果的获取可为在役桥梁全寿命维养策略制定等工作提供直接参考。  相似文献   
4.
为实现运营阶段中央扣对悬索桥动力特性及车载激励下短吊索响应影响的量化分析,进而为悬索桥设计及维养策略提供参考,基于已编制的车-桥耦合分析系统,引入制动惯性力及俯仰力矩模拟车辆制动力,建立了考虑车辆制动过程的车-桥耦合分析系统;以一座单跨地锚式悬索桥为工程背景,建立无、有中央扣2种缆梁连接体系的全桥空间有限元模型,研究中央扣对悬索桥动力特性及行车激励下短吊索缆梁相对位移响应的影响;采用建立的分析系统,考虑不同制动位置、初速度及减速度研究中央扣对短吊索制动激励响应的控制作用;考虑短吊索因缆梁相对错动产生的弯曲应力,建立车流激励下短吊索疲劳损伤的分析流程,研究中央扣对短吊索的等效疲劳应力幅值及疲劳损伤度的影响。分析结果表明:中央扣提高了悬索桥的纵飘及扭转刚度,改变了缆梁间的相对运动特性,减小了缆梁错动循环次数及位移幅值,可有效控制行车激励下60.3%以上的短吊索缆梁相对位移响应;考虑不同制动位置、初速度及减速度的取值,中央扣对短吊索缆梁相对位移幅值的减弱率可分别达92.9%、85.1%及85%以上,有效降低了短吊索制动激励响应对3个制动参数的敏感性;中央扣对随机车载下短吊索轴向应力幅值的影响较小,而对因缆梁相对错动产生的弯曲应力幅值影响较大,减弱了短吊索的等效疲劳应力幅值及疲劳损伤度,尤其是距中央扣位置最近的短吊索,疲劳损伤度降低了近71.4%;因此,中央扣可有效控制运营阶段悬索桥短吊索的车载激励响应。  相似文献   
5.
为评估运营阶段风及车流作用下大跨桥梁转轴式伸缩装置的服役状态,融合机构运动理论及磨损机理建立转轴式伸缩装置滑动支承构件的磨损寿命评估方法。以变杆长双滑块双导杆四连杆机构的运动理论为基础,推导了多滑块多导杆的伸缩装置机构运动学数值仿真模型;基于Archard磨损理论提出了伸缩装置滑动支承磨损深度计算模型,以失效概率为指标建立了伸缩装置滑动支承磨损寿命的评估方法;以一单跨悬索桥为算例,对风和车流作用下伸缩装置滑动支承的服役年限及其年更换次数进行定量评估。分析结果表明:建立伸缩装置的机构运动仿真模型,通过与8缝伸缩机构的运动试验数据对比,验证了仿真模型的准确性;利用伽马分布能够较好地模拟伸缩装置滑动支承磨损深度的累加概率特性;随机车流和风作用下,悬索桥伸缩装置滑动支承的服役年限随距滑动侧越近而越小,失效概率反之;一般流和风速10 m·s-1工况下,超82%的滑动支承服役年限小于15年;不同车流密度-风速联合作用对伸缩装置滑动支承的服役年限影响显著,伸缩装置滑动支承的合理更换周期应依据桥址交通量荷载水平及风场条件制定;建立的转轴式伸缩装置滑动支承磨损寿命评估方法可为同类型伸缩装置机构的磨损寿命评估提供参考借鉴。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号