首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合类   2篇
  2014年   1篇
  2013年   1篇
排序方式: 共有2条查询结果,搜索用时 734 毫秒
1
1.
The optimal allocation model of regional water resources is built with the purpose of maximizing the comprehensive economic,social and environmental benefits of regional water consumption.In order to solve the problems that easily appear during the model solution of regional water resource optimal allocation with multiple water sources,multiple users and multiple objectives like"curse of dimensionality"or sinking into local optimum,this paper proposes a particle swarm optimization(PSO)algorithm based on immune evolutionary algorithm(IEA).This algorithm introduces immunology principle into particle swarm algorithm.Its immune memorizing and self-adjusting mechanism is utilized to keep the particles in the fitness level at a certain concentration and guarantee the diversity of population.Also,the global search characteristics of IEA and the local search capacity of particle swarm algorithm have been fully utilized to overcome the dependence of PSO on initial swarm and the deficiency of vulnerability to local optimum.After applying this model to the allocation of water resources in Zhoukou,we obtain the scheme for optimization allocation of water resources in the planning level years,i.e.2015and 2025 under the guarantee rate of 50%.The calculation results indicate that the application of this algorithm to solve the issue of optimal allocation of regional water resources is reliable and reasonable.Thus it ofers a new idea for solving the issue of optimal allocation of water resources.  相似文献   
2.
A new algorithm to automatically extract drainage networks and catchments based on triangula- tion irregular networks (TINs) digital elevation model (DEM) was developed. The flow direction in this approach is determined by computing the spatial gradient of triangle and triangle edges. Outflow edge was defined by comparing the contribution area that is separated by the steepest descent of the triangle. Local channels were then tracked to build drainage networks. Both triangle edges and facets were considered to con- struct flow path. The algorithm has been tested in the site for Hawaiian Island of Kaho'olawe, and the results were compared with those calculated by ARCGIS as well as terrain map. The reported algorithm has been proved to be a reliable approach with high efficiency to generate well-connected and coherent drainage networks.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号