首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   34篇
  免费   1篇
公路运输   8篇
综合类   4篇
水路运输   18篇
综合运输   5篇
  2022年   1篇
  2021年   1篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   2篇
  2016年   4篇
  2015年   1篇
  2014年   3篇
  2013年   3篇
  2012年   3篇
  2011年   2篇
  2009年   3篇
  2008年   2篇
  2000年   1篇
  1999年   1篇
  1996年   1篇
  1992年   1篇
  1987年   1篇
  1986年   2篇
排序方式: 共有35条查询结果,搜索用时 15 毫秒
1.
This paper presents a literature review on most of the faults and their models that are considered on a diesel engine. Several faults that may be produced on diesel engine have been analyzed, classified, modeled, and their influences on the global system have been shown. Thus, this paper aims to prepare an important data base on diesel engine faults which may help researchers to develop precise strategies on diesel engine fault diagnosis and prognosis, and also it helps in the development of diesel engine simulators aiming to study the behavior of the diesel engine in the presence of faults. Different fault models such as analytical, empirical, degradation models which may be represented as function of time or as function of the number of cycles, data driven models such as neural network models, or simply constant are presented and analyzed. The global overall models for diesel engine integrating faults are expressed. And finally, the use of these models with the most common failure density distribution functions is proposed giving a more realistic approach to our study.  相似文献   
2.
This study presents a numerical method for optimizing hull form in calm water with respect to total drag which contains a viscous drag and a wave drag. The ITTC 1957 model-ship correlation line was used to predict frictional drag and the corrected linearized thin-ship theory was employed to estimate the wave drag. The evolution strategy (ES) which is a member of the evolutionary algorithms (EAs) family obtains an optimum hull form by considering some design constraints. Standard Wigley hull is considered as an initial hull in optimization procedures for two test cases and new hull forms were achieved at Froude numbers 0.24, 0.316 and 0.408. In one case the ES technique was ran for the initial hull form, where the main dimensions were fixed and the only variables were the hull offsets. In the other case in addition to hull offsets, the main dimensions were considered as variables that are optimized simultaneously. The numerical results of optimization procedure demonstrate that the optimized hull forms yield a reduction in total drag.  相似文献   
3.
GLOBAL MEASURE ON IMAGE CONTENT   总被引:1,自引:0,他引:1  
IntroductionContent- based image retrieval has been proposedto allow retrieval to be performed on the basis ofa variety of aspects of image content[1] .A chal-lenging problem arises with many imagedatabases,within which queries are posed via vi-sual or pictorial examples.A common visualquery to an image database system would involvefinding all images in the database which containa subimage that is similar to the query image.Such retrievals must be based on embedded con-tent features,such as sh…  相似文献   
4.
Nowadays, several stern devices are attracting a great deal of attention. The control surface is an effective apparatus for improving the hydrodynamic performance of planing hulls and is considered an important element in the design of planing hulls. Control surfaces produce forces and a pitching moment due to the pressure distribution that they cause, which can be used to change the running state of high-speed marine boats. This work elaborates a new study to evaluate the hydrodynamic performance of a planing boat with a trim tab and an interceptor, and optimizes them by using an optimization algorithm. The trim tab and the interceptor have been used to optimize the running trim and motion control of semi-planing and planing boats at various speeds and sea conditions for many years. In this paper, the usage of trim tab is mathematically verified and experimental equations are utilized to optimize the performance of a planing boat at a specificd trim angle by using an optimization algorithm. The genetic algorithm(GA) is one of the most useful optimizing methods and is used in this study. The planing boat equations were programmed according to Savitsky's equations and then analyzed in the framework of the GA-based optimization for performance improvement of theplaning hull. The optimal design of trim tab and interceptor for planing boat can be considered a multiobjective problem. The input data of GA include different parameters, such as speed, longitudinal center of gravity, and deadrise angle. We can extract the best range of forecasting the planing boat longitudinal center of gravity, the angle of the trim, and the least drag force at the best trim angle of the boat.  相似文献   
5.
The research performed in this paper was carried out to investigate the computational procedure to design seakeeping optimized ship hull form. To reach the optimized hull form, four stages should be done, which consists of: generate alternative hull form, seakeeping calculations, objective functions and optimization techniques. There are many parameters that may be determined in ship hull form optimization. This paper deals with developed strip theory for determining the seakeeping performance, genetic algorithm (GA) as optimization method, high order equations for curve fitting of the hull form and finally reaching to the minimum bow vertical motion in regular head waves. The Wigley hull is selected as an initial hull and carried to be optimized. Two cases are considered. For the first case, the only form coefficients of the hull (CB, CM, Cw, Cp) are changed and main dimensions (L, B, 7) are fixed. In the second case both hull form and main dimensions are varied simultaneously. Finally, optimized hull form and its seakeeping performances are presented. The results of optimization procedure demonstrate that the optimized hull forms yield a reduction in vertical motion and acceleration.  相似文献   
6.
The rotary Atkinson cycle engine includes two modes of combustion: combustion initiation and propagation in ignition chamber and then flame jet entrainment and propagation in expansion chamber. The turbulent flame propagation model is a predictive model for SI engines which could be developed for this type of combustion for the rotary Atkinson engine similar to the congenital engine with pre-chamber; in split combustion chamber SI engines, small amount of fuel is burned in pre-chamber while the fuel burned in ignition chamber of rotary Atkinson cycle is considerable. In this study a mathematical modeling of spherical flame propagation inside ignition chamber and new combined conical flame and spherical flame propagation model of a new two-stroke Atkinson cycle SI engine will be presented. The mathematical modeling is carried out using two-zone combustion analysis and the model also is validated against experimental tests and compared with previous study using non-predictive Weibe function model.  相似文献   
7.
A combination of methods was developed that can determine hydrodynamic forces on a planing hull in steady motion. Firstly, a potential-based boundary-element method was used to calculate the hydrodynamic pressure, induced resistance and lift. Then the frictional resistance component was determined by the viscous boundary layer theory. Finally, a particular empirical technique was applied, to determine the region of upwash geometry and determine spray resistance. Case studies involving four models of Series 62 planing craft were run. These showed that the suggested method is efficient and capable, with results that are in good agreement with experimental measurements over a wide range of volumetric Froude numbers.  相似文献   
8.
In this paper vehicle path-following in the presence of rollover risk is investigated. Vehicles with high centre of mass are prone to roll instability. Untripped rollover risk is increased in high centre of gravity vehicles and high-friction road condition. Researches introduce strategies to handle the short-duration rollover condition. In these researches, however, trajectory tracking is affected and not thoroughly investigated. This paper puts stress on tracking error from rollover prevention. A lower level model predictive front steering controller is adopted to deal with rollover and tracking error as a priority sequence. A brake control is included in lower level controller which directly obeys an upper level controller (ULC) command. The ULC manages vehicle speed regarding primarily tracking error. Simulation results show that the proposed control framework maintains roll stability while tracking error is confined to predefined error limit.  相似文献   
9.
Transportation - Path choice modelling is typically conducted by considering a subset of paths, not the universal set of all feasible paths as this is computationally challenging. This study...  相似文献   
10.
A numerical analysis based on the boundary element method (BEM) was presented for the hydrodynamic performance of a high skew propeller (HSP) which is employed by an underwater vehicle (UV). Since UVs operate at two different working conditions (surface and submerged conditions), the design of such a propeller is a cumbersome task. This is primarily due to the fact that the resistance forces as well as the vessel efficiency under these conditions are significantly different. Therefore, some factors are necessary for the design of the optimum propeller to utilize the power at the mentioned conditions. The design objectives of the optimum propeller are to obtain the highest possible thrust, minimum torque, and efficiency. In the current study, a 5-bladed HSP was chosen for running the UV. This propeller operated at the stern of the UV hull where the inflow velocity to the propeller was non-uniform. Some parameters of the propeller were predicted based on the UV geometrical hull and operating conditions. The computed results include the pressure distribution and the hydrodynamic characteristics of the HSP in open water conditions, and comparison of these results with those of the experimental data indicates good agreement. The propeller efficiency for both submerged and surface conditions was found to be 67% and 64%, respectively, which compared to conventional propellers is a significantly higher efficiency.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号