首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6篇
  免费   1篇
综合类   1篇
铁路运输   6篇
  2023年   1篇
  2021年   2篇
  2020年   1篇
  2018年   3篇
排序方式: 共有7条查询结果,搜索用时 0 毫秒
1
1.
开展高速动车组变轨距转向架动力学性能的滚动振动台架试验研究,最高试验速度为600 km/h,包括在准轨1435 mm和宽轨1520 mm轨距线路上的蛇行稳定性、运行平稳性和轮轴横向间隙动态变化情况.准轨线路的钢轨廓形为CN60,轨底坡1/40;宽轨线路的钢轨廓形为俄罗斯P65,轨底坡1/20.试验结果表明,在2种轨距线路上,变轨距转向架的线性临界速度均在600 km/h以上,实际轨道激励下临界速度大于440 km/h,满足线路实际400 km/h运营需求.平稳性指标小于2.0,舒适度指标小于1.5,满足标准限值要求;轮轴横向间隙动态变化量小于0.7 mm.  相似文献   
2.
变轨距转向架轮对与常规转向架轮对结构相比,需要增设一套用于轨距变化的解锁-锁紧装置,其作用是实现车轮滑移前的解锁和运行中的锁紧固定,是直接影响能否顺利实现轮对内侧距变化和确保列车运行安全的关键部件。介绍了高速变轨距动车组转向架解锁-锁紧装置的结构及作用原理,分析了该装置工作时的受力状态,同时对该装置进行了强度分析和寿命计算。分析和计算结果表明:解锁-锁紧装置满足设计要求。  相似文献   
3.
为了适应不同的轨距尺寸,以传统动车组轮对结构为基础,进行了400 km/h高速变轨距走行系统关键技术设计,包括车轮和车轴的间隙设计研究、车轮和车轴的横向锁紧机构设计、转矩的传动技术设计、地面装置的设计以及适应高速运行的动力学分析,对各项技术的设计原理及其关键作用进行了详细说明。该设计思路可供国内变轨距转向架的研发提供参考。  相似文献   
4.
建立了一种适用于1 435/1 000 mm轨距变换、电机体悬的高速动车组变轨距转向架动车的动力学模型;重点计算在2种轨距线路上动车采用不同的轮轨匹配关系、不同磨耗状态下的运行稳定性分岔特性,并计算了轨距、轮轨游间对运行稳定性的影响;计算了车辆运行垂向和横向平稳性以及在不同曲线工况条件下车辆的曲线通过性能,结合相关动力学标准对各项动力学性能指标进行了评定,并对造成各项动力学指标差异的原因进行了简要分析;以电机体悬式变轨距转向架动车的12个悬挂参数为因子,以车辆蛇行失稳速度、轮轴横向力、轮轨垂向力、轮重减载率和脱轨系数5个动力学指标为响应,采用最优拉丁超立方设计方法进行试验设计;建立径向基神经网络代理模型,采用NSGA-Ⅱ多目标遗传算法对动车主要的悬挂参数进行多目标优化。计算结果表明:在设计工况条件下,所设计的高速动车组变轨距转向架动车在2种轨距线路上运行稳定性、平稳性和曲线通过性能均能满足设计要求;在1 000 mm轨距上运行的稳定性优于1 435 mm轨距情况,但运行平稳性和曲线通过性能劣于1 435 mm轨距情况;优化后的悬挂参数可以兼顾车辆的运行稳定性、平稳性和曲线通过性能,使车辆具有更好的动力学性能,在2种轨距线路运行上所有计算性能指标均满足相关标准。   相似文献   
5.
文章对高速列车1 435/1 520 mm变轨距转向架轮轴滑动轴承的接触特性和参数优化展开研究,按照GB/T 5371—2004确定了“车轮-滑动轴承”“滑移衬套-车轴”配合的过盈量大小。基于Hypermesh与ANSYS联合仿真,确定了滑动轴承与滑移衬套的材料、优化后的滑动轴承结构参数。研究结果表明,滑动轴承材料采用45钢,滑移衬套材料采用“聚酰胺-酰亚胺”(PAI)能有效减小两者之间的接触压力;随着滑动轴承斜面倾角的增大,“车轮-滑动轴承”平均接触压力呈近似线性增加,“滑动轴承-滑移衬套”最大接触压力先减小后增大;对“车轮-滑动轴承”接触部分a点和c点进行倒圆处理,能有效缓解因结构几何形状突变导致的应力集中现象;车轴受径向载荷弯曲变形时,会对滑动轴承产生绕x轴的偏转力矩,对滑动轴承b点位置进行倒圆处理能有效改善“滑动轴承-滑移衬套”接触状态。  相似文献   
6.
介绍了轴套式花键的功能、结构及材料选择,并对花键的渐开线齿进行了强度的理论计算。过盈量的大小不仅决定了轴套式花键能否可靠传递轮轴间的扭矩,而且决定了轴套与车轴过盈配合面间的应力大小,对过盈量进行了理论和有限元计算,同时还对轴套式花键进行了疲劳强度校核。计算和分析表明:选择轴套式花键来传递轮轴间的扭矩不仅大大降低了对车轴材料的性能要求,而且是切实可行的。  相似文献   
7.
为了确定高速动车组齿轮箱圆锥滚子轴承滚道剥离的原因,对故障样件进行了理化检测和轴承运动几何分析,确定了导致损伤的主要原因是由于滚动接触疲劳,反映出轴承工作过程中存在润滑不充分的事实。建立了滚动体与滚道的受力模型,对两者相互接触弹性变形的特征进行了分析。基于舍弗勒公司的高速滚动轴承动力学仿真软件对轴承运动状态进行了仿真验证,模拟了轴承运转过程中滚动体的自转效应及滚动体与滚道瞬时接触区域,阐明了润滑油膜厚度不足是诱发圆锥滚子轴承滚道接触损伤的重要原因。  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号