首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2篇
  免费   0篇
综合运输   2篇
  2012年   1篇
  2011年   1篇
排序方式: 共有2条查询结果,搜索用时 15 毫秒
1
1.
This paper transfers the classic frequency-based transit assignment method of Spiess and Florian to containers demonstrating its promise as the basis for a global maritime container assignment model. In this model, containers are carried by shipping lines operating strings (or port rotations) with given service frequencies. An origin–destination matrix of full containers is assigned to these strings to minimize sailing time plus container dwell time at the origin port and any intermediate transhipment ports. This necessitated two significant model extensions. The first involves the repositioning of empty containers so that a net outflow of full containers from any port is balanced by a net inflow of empty containers, and vice versa. As with full containers, empty containers are repositioned to minimize the sum of sailing and dwell time, with a facility to discount the dwell time of empty containers in recognition of the absence of inventory. The second involves the inclusion of an upper limit to the maximum number of container moves per unit time at any port. The dual variable for this constraint provides a shadow price, or surcharge, for loading or unloading a container at a congested port. Insight into the interpretation of the dual variables is given by proposition and proof. Model behaviour is illustrated by a simple numerical example. The paper concludes by considering the next steps toward realising a container assignment model that can, amongst other things, support the assessment of supply chain vulnerability to maritime disruptions.  相似文献   
2.
The vehicle navigation problem studied in Bell (2009) is revisited and a time-dependent reverse Hyperstar algorithm is presented. This minimises the expected time of arrival at the destination, and all intermediate nodes, where expectation is based on a pessimistic (or risk-averse) view of unknown link delays. This may also be regarded as a hyperpath version of the Chabini and Lan (2002) algorithm, which itself is a time-dependent A* algorithm. Links are assigned undelayed travel times and maximum delays, both of which are potentially functions of the time of arrival at the respective link. Probabilities for link use are sought that minimise the driver’s maximum exposure to delay on the approach to each node, leading to the determination of a pessimistic expected time of arrival at the destination and all intermediate nodes. Since the context considered is vehicle navigation, the probability of link use measures link attractiveness, so a link with a zero probability of use is unattractive while a link with a probability of use equal to one will have no attractive alternatives. A solution algorithm is presented and proven to solve the problem provided the node potentials are feasible and a FIFO condition applies to undelayed link travel times. The paper concludes with a numerical example.  相似文献   
1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号