首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   738篇
  免费   67篇
公路运输   313篇
综合类   335篇
水路运输   49篇
铁路运输   47篇
综合运输   61篇
  2024年   6篇
  2023年   8篇
  2022年   23篇
  2021年   27篇
  2020年   33篇
  2019年   20篇
  2018年   29篇
  2017年   23篇
  2016年   33篇
  2015年   34篇
  2014年   73篇
  2013年   51篇
  2012年   72篇
  2011年   81篇
  2010年   47篇
  2009年   62篇
  2008年   51篇
  2007年   48篇
  2006年   34篇
  2005年   21篇
  2004年   10篇
  2003年   7篇
  2002年   2篇
  2001年   3篇
  2000年   3篇
  1997年   1篇
  1996年   2篇
  1993年   1篇
排序方式: 共有805条查询结果,搜索用时 31 毫秒
1.
本文以陕西省引汉济渭工程岭北TBM施工段为依托,为解决TBM在狭小空间内较大部件更换维修困难难题,开展大直径TBM刀盘边块在狭小空间内更换技术研究。通过大量研究,创新性提出新刀盘边块更换方法——基坑法,即通过专用设备配合TBM固有性能,在无扩大洞室工况下完成刀盘边块更换。经岭北TBM刀盘边块更换实例证明,此方法操作简单、适用性高,尤其在狭小空间内更具有优越性,且能节省大量维修时间,有效提高施工工效,可为同类TBM施工提供有益借鉴。  相似文献   
2.
王洁 《交通科技》2006,(5):74-77
在分析杭州市交通供需现状的基础上,提出了规划多中心结构和混合功能区,以减少不必要的出行以及合理配置交通源,并对改善中心区交通提出切实可行的对策。  相似文献   
3.
盾尾密封刷是盾构机的主要组成部分。完好的盾尾密封刷是保证盾构机不发生漏浆的前提条件。当盾尾密封刷出现磨损、盾尾严重漏浆时,必须及时更换。以南京地铁土压平衡盾构机盾尾密封刷更换为背景,介绍盾尾密封刷的更换过程;采用泊松曲线沉降预测的研究方法,分析盾尾刷更换期间地表变形,说明盾尾刷更换方法合理、盾尾0.6~0.8MPa的注浆压力科学合理,保证了盾尾密封刷安全更换。  相似文献   
4.
在设置路侧公交专用道的交叉口处,可通过划定交织区的方式允许右转车辆借用一定长度的公交专用道通行.合理规划公交车与右转车的交织区长度有利于提高借道右转的通行效率,减少在交织区前的排队车辆数从而降低道路混乱程度,保障公交车的专用路权.本文分析了公交站点影响下的公交车车头时距分布,建立了右转车穿越交织区长度计算模型,并结合实际调查数据进行了算例分析和模型验证.研究成果可为公交优先条件下的交叉口空间优化设计提供理论参考.  相似文献   
5.
Transit signal priority (TSP) may be combined with road-space priority (RSP) measures to increase its effectiveness. Previous studies have investigated the combination of TSP and RSP measures, such as TSP with dedicated bus lanes (DBLs) and TSP with queue jump lanes (QJLs). However, in these studies, combined effects are usually not compared with separate effects of each measure. In addition, there is no comprehensive study dedicated to understanding combined effects of TSP and RSP measures. It remains unclear whether combining TSP and RSP measures creates an additive effect where the combined effect of TSP and RSP measures is equal to the sum of their separate effects. The existence of such an additive effect would suggest considerable benefits from combining TSP and RSP measures. This paper explores combined effects of TSP and RSP measures, including TSP with DBLs and TSP with QJLs. Analytical results based on time-space diagrams indicate that at an intersection level, the combined effect on bus delay savings is smaller than the additive effect if there is no nearside bus stop and the traffic condition in the base case is under-saturated or near-saturated. With a near-side bus stop, the combined effect on bus delay savings at an intersection level can be better than the additive effect (or over-additive effect), depending on dwell time, distance from the bus stop to the stop line, traffic demand, and cycle length. In addition, analytical results suggest that at an arterial level, the combined effect on bus delay savings can be the over-additive effect with suitable signal offsets. These results are confirmed by a micro-simulation case study. Combined effects on arterial and side-street traffic delays are also discussed.  相似文献   
6.
A smart design of transport systems involves efficient use and allocation of the limited urban road capacity in the multimodal environment. This paper intends to understand the system-wide effect of dividing the road space to the private and public transport modes and how the public transport service provider responds to the space changes. To this end, the bimodal dynamic user equilibrium is formulated for separated road space. The Macroscopic Fundamental Diagram (MFD) model is employed to depict the dynamics of the automobile traffic for its state-dependent feature, its inclusion of hypercongestion, and its advantage of capturing network topology. The delay of a bus trip depends on the running speed which is in turn affected by bus lane capacity and ridership. Within the proposed bimodal framework, the steady-state equilibrium traffic characteristics and the optimal bus fare and service frequency are analytically derived. The counter-intuitive properties of traffic condition, modal split, and behavior of bus operator in the hypercongestion are identified. To understand the interaction between the transport authority (for system benefit maximization) and the bus operator (for its own benefit maximization), we examine how the bus operator responds to space changes and how the system benefit is influenced with the road space allocation. With responsive bus service, the condition, under which expanding bus lane capacity is beneficial to the system as a whole, has been analytically established. Then the model is applied to the dynamic framework where the space allocation changes with varying demand and demand-responsive bus service. We compare the optimal bus services under different economic objectives, evaluate the system performance of the bimodal network, and explore the dynamic space allocation strategy for the sake of social welfare maximization.  相似文献   
7.
刘强  高玉杰 《水运工程》2018,(7):159-164
建设大型油罐软基处理的重点在于控制工后沉降和差异沉降,但普通强夯置换法存在置换墩体着底情况不良与地基工后沉降量大的问题,针对这个问题进行了普通置换强夯法的改进研究。采取预成孔工艺能解决墩体着底情况不良的问题,从而减少地基工后沉降量。预成孔置换强夯法是一种用于处理软弱土地基的施工工艺,具有工期短、造价低与绿色环保等优点,通过预成孔保证置换墩着底可靠性,从而成功控制了工后沉降和差异沉降,实际检测结果和充水预压试验证实了处理方案的可靠性。  相似文献   
8.
Transportation is a major cause for environmental degradation via exhaust emissions. For many transit-oriented metropolitan areas, bus trips often constitute a sizeable mode share. Managing the bus fleet, in particular updating buses to comply with the newer emissions standards, therefore, can have a substantial impact on transportation-induced air quality. This paper presents the approach of remaining life additional benefit–cost (RLABC) analysis for maximising the total net benefit by either early-retiring or retrofitting the current bus fleet within their lifespans. By referring to the net benefits for different bus types estimated by RLABC analysis, the most beneficial management scheme for the current bus fleet can be identified. Optimal bus fleet management (BFM) models based on the RLABC analysis for the operator and the government are developed. Then a government subsidy plan is produced to achieve win–win solutions, which will offer efficient and flexible management schemes. To illustrate the approach, the largest bus company in Hong Kong, which carries more than 23% of the total trips in Hong Kong, is taken as a case study example. Instead of adopting a fixed retirement plan, such as replacing buses at the age of 17 as is currently practised, the proposed method develops an optimal BFM scheme that progressively phases out buses or retrofits them. This study produces promising results to demonstrate the large benefit of this approach for optimal bus fleet management.  相似文献   
9.
This study investigates the cost competitiveness of different types of charging infrastructure, including charging stations, charging lanes (via charging-while-driving technologies) and battery swapping stations, in support of an electric public transit system. To this end, we first establish mathematical models to investigate the optimal deployment of various charging facilities along the transit line and determine the optimal size of the electric bus fleet, as well as their batteries, to minimize total infrastructure and fleet costs while guaranteeing service frequency and satisfying the charging needs of the transit system. We then conduct an empirical analysis utilizing available real-world data. The results suggest that: (1) the service frequency, circulation length, and operating speed of a transit system may have a great impact on the cost competitiveness of different charging infrastructure; (2) charging lanes enabled by currently available inductive wireless charging technology are cost competitive for most of the existing bus rapid transit corridors; (3) swapping stations can yield a lower total cost than charging lanes and charging stations for transit systems with high operating speed and low service frequency; (4) charging stations are cost competitive only for transit systems with very low service frequency and short circulation; and (5) the key to making charging lanes more competitive for transit systems with low service frequency and high operating speed is to reduce their unit-length construction cost or enhance their charging power.  相似文献   
10.
In this paper, a novel mesoscopic multilane model is proposed to enable simultaneous simulation of mandatory and discretionary lane-changing behaviors to realistically capture multilane traffic dynamics. The model considers lane specific fundamental diagrams to simulate dynamic heterogeneous lane flow distributions on expressways. Moreover, different priority levels are identified according to different lane-changing motivations and the corresponding levels of urgency. Then, an algorithm is proposed to estimate the dynamic mandatory and discretionary lane-changing demands. Finally, the lane flow propagation is defined by the reaction law of the demand–supply functions, which can be regarded as an extension of the Incremental-Transfer and/or Priority Incremental-Transfer principles. The proposed mesoscopic multilane cell transmission model is calibrated and validated on a complex weaving section of the State Route 241 freeway in Orange County, California, showing both the positive and negative impact of lane changing maneuvers, e.g., balancing effect and capacity drop, respectively. Moreover, the empirical study verifies that the model requires no additional data other than the cell transmission model does. Thus, the proposed model can be deployed as a simple simulation tool for accessing dynamic mesoscopic multilane traffic state from data available to most management centers, and also the potential application in predicting the impact of traffic incident or lane control strategy.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号