首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   67篇
  免费   3篇
公路运输   50篇
综合类   7篇
水路运输   7篇
铁路运输   5篇
综合运输   1篇
  2023年   1篇
  2022年   3篇
  2019年   2篇
  2018年   2篇
  2017年   3篇
  2016年   6篇
  2015年   2篇
  2014年   3篇
  2013年   3篇
  2012年   21篇
  2011年   3篇
  2010年   1篇
  2009年   2篇
  2008年   7篇
  2007年   1篇
  2006年   4篇
  2005年   4篇
  2004年   1篇
  1998年   1篇
排序方式: 共有70条查询结果,搜索用时 524 毫秒
1.
Driving force distribution control is one of the characteristic performance aspects of in-wheel motor vehicles and various methods have been developed to control direct yaw moment while turning. However, while these controls significantly enhance vehicle dynamic performance, the additional power required to control vehicle motion still remains to be clarified. This paper constructed new formulae of the mechanism by which direct yaw moment alters the cornering resistance and mechanical power of all wheels based on a simple bicycle model, including the electric loss of the motors and the inverters. These formulation results were validated by an actual test vehicle equipped with in-wheel motors in steady-state turning. The validated theory was also applied to a comparison of several different driving force distribution mechanisms from the standpoint of innate mechanical power.  相似文献   
2.
This paper presents a new steer-by-wire concept using an all-wheel drive vehicle layout with in-wheel motors while completely omitting the application of any dedicated steering device. Steering is based on the so-called differential steering principle which generates the necessary steering moment about the kingpins by a traction force difference between left and right sides of the vehicle. In order to investigate the behaviour of the vehicle and to design the underlying control algorithms, a planar vehicle model is presented, where the vehicle is described as constrained non-holonomic system requiring a special treatment. A state feedback linear controller for controlling of the lateral dynamics of the vehicle at higher speeds and a simple PI angle controller for low-speed manoeuvring are developed. The resulting behaviour of the system is investigated by various simulation experiments demonstrating a comparable steering performance of the new steering concept as that of conventional passenger cars.  相似文献   
3.
ABSTRACT

The effect of centre-of-gravity heights on the high-speed performance measures of long combination vehicles including truck with double centre-axle trailers, Nordic, and A-double combination vehicles is investigated. The high fidelity three-dimensional models, used in this research, are validated against physical test data. These models are often accurate in terms of the actual dynamic behaviours of the vehicle. On the other hand, the simple yaw-plane single-track models with linear tires require less number of vehicle parameters. In this paper, it is investigated how accurate the estimations of performance measures are at high forward speeds by such single-track linear (STL) models. The influence of load height is especially studied. The high-speed performance-based standard or PBS measures considered are rearward amplifications of both lateral acceleration and yaw velocity; lateral load transfer; yaw damping and high-speed transient offtracking. The results show that tire relaxation has a large effect and it is rather easy to add to an STL model, so it is assumed to be modelled in STL. With realistically high payload and a required accuracy of PBS measures of approximately 10%, only the accuracy of rearward amplification of yaw velocity calculated by the frequency response is fulfilled by the STL. With low payload, the same statement is valid, but with around 5% in required accuracy. The roll dynamics effects are more important than the tire non-linearities.  相似文献   
4.
It is well known that track defects cause profound effects to the dynamics of railway wagons; normally such problems are examined for cases of wagons running at a constant speed. Brake/traction torques affect the speed profile due to the wheel–rail contact characteristics but most of the wagon–track interaction models do not explicitly consider them in simulation. The authors have recently published a model for the dynamics of wagons subject to braking/traction torques on a perfect track by explicitly considering the pitch degree of freedom for wheelsets. The model is extended for cases of lateral and vertical track geometry defects and worn railhead and wheel profiles. This paper presents the results of the analyses carried out using the model extended to the dynamics of wagons containing less ideal wheel profiles running on tracks with geometry defects and worn rails.  相似文献   
5.
This paper presents a semi-active differential, magneto-rheological fluid limited slip differential, which allows us to bias the torque between the driving wheels. It is based on the magneto-rheological fluid employment, by which it is possible to change, in a controlled manner, the internal friction torque and, consequently, the torque bias ratio. This device is an adaptive one and allows us to obtain an asymmetric torque distribution in order to improve vehicle handling. The device modelling and the control algorithm, realised for this activity, are described. The illustrated results highlight the advantages that are attainable regarding directional behaviour, stability, and traction.  相似文献   
6.
This paper proposes a steering control method based on optimal control theory to improve the maneuverability of a six-wheeled vehicle during cornering. The six-wheeled vehicle is believed to have better performance than a four-wheeled vehicle in terms of its capability for crossing obstacles, off-road maneuvering and fail-safe handling when one or two of the tires are punctured. Although many methods to improve the four-wheeled vehicle’s lateral stability have been studied and developed, there have only been a few studies on the six-wheeled vehicle’s lateral stability. Some studies of the six-wheeled vehicle have been reported recently, but they are related to the desired yaw rate of a four-wheeled vehicle to control the six-wheeled vehicle’s maneuvering during corning. In this paper, the sideslip angle and yaw rate are controlled to improve the maneuverability during cornering by independent control of the steering angles of the six wheels. The desired yaw rate that is suitable for a six-wheeled vehicle is proposed as a control target. In addition, a scaled-down vehicle with six drive motors and six steering motors that can be controlled independently is designed. The performance of the proposed control methods is verified using a full model vehicle simulation and scaled-down vehicle experiment.  相似文献   
7.
In this paper, the effect of both passive and actively-modified vehicle handling characteristics on minimum time manoeuvring for vehicles with 4-wheel torque vectoring (TV) capability is studied. First, a baseline optimal TV strategy is sought, independent of any causal control law. An optimal control problem (OCP) is initially formulated considering 4 independent wheel torque inputs, together with the steering angle rate, as the control variables. Using this formulation, the performance benefit using TV against an electric drive train with a fixed torque distribution, is demonstrated. The sensitivity of TV-controlled manoeuvre time to the passive understeer gradient of the vehicle is then studied. A second formulation of the OCP is introduced where a closed-loop TV controller is incorporated into the system dynamics of the OCP. This formulation allows the effect of actively modifying a vehicle's handling characteristic via TV on its minimum time cornering performance of the vehicle to be assessed. In particular, the effect of the target understeer gradient as the key tuning parameter of the literature-standard steady-state linear single-track model yaw rate reference is analysed.  相似文献   
8.
抗蛇行减振器对机车运行品质的影响   总被引:1,自引:0,他引:1  
借助虚拟样机技术和ADAMS/Rail软件,针对国内某型电力机车建立了机车系统详细的动力学仿真模型。利用动力学仿真工具,对抗蛇行减振器的特性进行分析,研究其参数变化、失效等对机车运行性能的影响,得出其规律。  相似文献   
9.
Dynamic game theory brings together different features that are keys to many situations in control design: optimisation behaviour, the presence of multiple agents/players, enduring consequences of decisions and robustness with respect to variability in the environment, etc. In the presented methodology, vehicle stability is represented by a cooperative dynamic/difference game such that its two agents (players), namely the driver and the direct yaw controller (DYC), are working together to provide more stability to the vehicle system. While the driver provides the steering wheel control, the DYC control algorithm is obtained by the Nash game theory to ensure optimal performance as well as robustness to disturbances. The common two-degrees-of-freedom vehicle-handling performance model is put into discrete form to develop the game equations of motion. To evaluate the developed control algorithm, CarSim with its built-in nonlinear vehicle model along with the Pacejka tire model is used. The control algorithm is evaluated for a lane change manoeuvre, and the optimal set of steering angle and corrective yaw moment is calculated and fed to the test vehicle. Simulation results show that the optimal preview control algorithm can significantly reduce lateral velocity, yaw rate, and roll angle, which all contribute to enhancing vehicle stability.  相似文献   
10.
Active steering control in the form of secondary yaw control (SYC) and actuated wheelset yaw (AWY) have been in prototype development. This paper presents a new active steering bogie design, actuated yaw force steering (AY-FS), that is able to steer under high traction loads in tight curves. The AY-FS bogie design is compared with the AWY design. The steering performance AWY under high traction loads has not been previously reported. This paper examines five control methods, three for AWY and two for AY-FS bogies and assesses the traction curving and stability control performance of the alternative designs and control methods compared with each other and to passive steering bogie designs. The curving performance results showed considerable advantage in the proposed AY-FS bogies over the AWY. It was shown that control must be applied to both the yaw angle and the steering angle of the bogie to achieve the best traction steering performance which was not possible with the AWY bogies. The proposed new bogie designs of AY-FS overall give better traction curving and stability performance than the AWY designs.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号