首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
为了研究不同颤振气动措施对扁平钢箱梁的颤振稳定性的影响,通过一大跨悬索桥扁平钢箱梁节段模型风洞试验,分别研究了设置上中央稳定板、封隔不同位置护栏、改变检修道护栏透风率3种措施对主梁颤振临界风速的影响,并利用静三分力与颤振导数的关系对颤振控制特性进行了研究。结果表明:单独设置合适高度的上中央稳定板可以有效提高断面的颤振临界风速;单独对检修道护栏进行一定的封隔(非全封),即适当降低一定的透风率对于提高颤振临界风速是有利的,但受风攻角影响;单独封隔检修道时,0°攻角下主梁断面颤振临界风速随透风率的增加近乎线性降低,而+3°攻角下颤振临界风速随着透风率的增加呈现"先增加后降低"的变化趋势;不受上中央稳定板高度影响,检修道护栏透风率对颤振临界风速的影响存在一个"过渡区间",即50%~75%透风率区间内,颤振临界风速随透风率的变化很小,而此区间外的更高或更低的透风率的改变都会对颤振临界风速产生显著地影响;在设置上中央稳定板的基础上,全封不同位置的护栏对于颤振临界风速的影响各不相同,在全封最外侧检修道护栏时颤振临界风速提高了约13.3%,而在全封外侧防撞护栏时却降低了约18%。在各风攻角下,上中央稳定板间隔设置时的主梁颤振临界风速要普遍低于通长设置时。  相似文献   

2.
某三线合一(1条高速公路线、1条城市主干道线及1条双线铁路线)公铁两用悬索桥主桥跨径为(52+800+800+52)m,加劲梁采用钢箱-桁架组合形式,其断面形式新颖,为研究该桥颤振稳定性能,确保桥梁的抗风安全,对主桁架梁节段进行1∶46.3的缩尺模型风洞试验,并探讨了风嘴以及栏杆位置、高度、透风率等各种气动措施对颤振临界风速的影响。结果表明:该桥在-3°攻角下,颤振临界风速小于相应的颤振检验风速,存在发生颤振的可能性;增设风嘴能提高负攻角下的颤振临界风速,但正攻角下颤振临界风速会有所降低;合理地改变上、下游栏杆位置、高度、透风率等组合措施,能使桥梁在各攻角情况下的颤振临界风速满足要求。  相似文献   

3.
设置中央稳定板对大跨度悬索桥抗风性能的影响   总被引:1,自引:0,他引:1  
在润扬长江公路大桥南汊悬索桥的节段模型风洞试验中,研究了稳定板高度对动力抗风稳定性的影响,采用了增设0.65 m高中央稳定板的有效措施,并获得了原断面和增设中央稳定板断面的气动导数和三分力系数;采用非线性静风和颤抖振时域方法,研究了设置中央稳定板对静动力抗风性能影响。结果表明,恰当地设置中央稳定板,不仅能够提高桥梁的颤振临界风速,还能够降低结构的抖振响应,而结构的静风失稳风速在正攻角下有所降低。  相似文献   

4.
以某特大跨径桁架加劲梁悬索桥为例,利用节段模型风洞试验,探讨研究桥面板中央开槽孔、加裙板、气动翼扳等各种气动控制措施对颤振临界风速的影响。试验结果表明,桥面板中央开槽、设置裙板、气动翼板都能够使桁架加劲梁桥颤振稳定性得到改善,但是都不能使各个攻角下的颤振临界风速都有所提高。气动翼板和桥面板中央开槽组合气动措施,且气动翼板的安装位置在桁架加劲梁弦杆,是最优化气动措施组合,可为类似大跨度桁架加劲梁桥抗风设计做参考。  相似文献   

5.
仙新路过江通道主桥为跨径布置(580+1 760+580) m的悬索桥,桥塔高267 m,加劲梁采用整体式闭口钢箱梁。为研究该桥运营阶段抗风性能,通过1∶50缩尺比加劲梁节段模型风洞试验分析大桥的驰振性能及提高大桥颤振性能的气动措施;通过1∶140缩尺比全桥气弹模型风洞试验,验证大桥的颤振、静风稳定性,并研究桥梁的抖振响应。结果表明:该桥在常遇风攻角范围内(-3°~+3°)不具备发生驰振的必要条件,加劲梁断面具有良好的驰振稳定性;加劲梁原始断面的颤振稳定性不满足规范要求,在中央防撞护栏间增设0.67 m高中央稳定板后,颤振临界风速高于颤振检验风速并具有一定的富余量;采用优化措施后,大桥具备良好的静风与颤振稳定性,加劲梁、桥塔在设计风速下各测点抖振响应值较小且均未发生不稳定振动或发散性振动。  相似文献   

6.
为了研究一座1 400 m跨径流线型闭口箱梁断面斜拉桥的颤振性能,根据其风致静力失稳或颤振前主梁最大有效风攻角已接近±10°的特点,通过弹簧悬挂节段模型试验,开展了大攻角下桥梁颤振性能研究。试验发现,在4°~10°风攻角下,高风速时模型均出现了弯扭耦合程度较弱的自限幅非线性颤振现象;而在其他攻角下,高风速时模型则表现为常规的发散型弯扭耦合颤振。研究发现,经典的线性颤振理论无法适用于研究试验中大攻角下出现的非线性颤振现象。因此,采用了一种简化的非线性半经验数学模型来表示非线性颤振中的自激扭矩,并从试验模型颤振位移时程中识别得到了模型参数。基于这一非线性自激力模型,通过试验测得的位移信号来构造自激扭矩时程,再利用自激扭矩的做功时程来识别各个气动参数。之后,利用其中的部分气动参数构造气动阻尼,并基于结构阻尼系数与气动线性阻尼系数之和为零的判断条件,提出了一种针对非线性颤振现象的临界风速确定方法,同时将线性和非线性颤振的起振判断条件进行了很好的统一。研究结果表明,利用这一方法求得的颤振临界风速与风洞试验中出现的现象基本吻合。  相似文献   

7.
为了解大跨度钢-混凝土结合梁悬索桥的抗风性能,以庙嘴长江大桥大江桥(主跨838m的悬索桥,加劲梁为钢-混凝土结合梁)为背景进行颤振稳定性研究。对该桥进行1∶50的缩尺节段模型颤振稳定性试验,根据试验结果进行气动优化措施分析,采取了在加劲梁断面增加2道1/4下稳定板的措施;针对优化后的加劲梁,进行1∶118的全桥缩尺模型风洞试验,并采用有限元软件ANSYS建立全桥三维有限元模型,进行了施工状态及成桥状态下的颤振分析。结果表明:在加劲梁断面增加2道1/4下稳定板后,提高了桥梁的颤振稳定性能;在-3°、0°和+3°风攻角作用下,该桥在施工状态和成桥状态下的颤振临界风速均大于检验风速,颤振稳定性能满足规范要求,较好地改善了桥梁的抗风性能。  相似文献   

8.
通过风洞试验和数值模拟获得主动气动翼板优化控制参数需要庞大的试验和计算成本,并且难以得到最优的翼板控制参数。基于流线箱梁主动气动翼板颤振控制的风洞试验数据,以翼板与主梁扭转运动相位差为输入,颤振临界风速变化比例为输出建立BP人工神经网络模型,对神经网络进行训练得到了主动气动翼板颤振临界风速预测关系。结果表明:预测输出值和实际值之间误差为5%左右,相关系数为0.965;使用训练得到的人工神经网络模型以1°增量对0°~360°范围内的气动翼板相位差进行遍历计算,得到了两侧翼板相位差对主梁-翼板系统颤振性能的影响规律,当迎风侧翼板相位差位于180°~360°内时系统颤振性能得以提高,最优参数组合为迎风翼板相位差231°,背风侧翼板相位差63°;利用获得的最优气动翼板相位差参数组合,建立了主梁-翼板系统流固耦合模型,对试验和神经网络模型的最优参数的颤振控制效果进行验证,证明了神经网络对颤振控制预测的准确性。提出的通过数据量较少的试验数据训练构建人工神经网络模型,构建预测主梁-翼板系统颤振性能的理论框架,显著改善了颤振控制效果,实现了高精度主动气动翼板颤振的优化控制。  相似文献   

9.
为了检验港珠澳大桥青州航道桥的风致稳定性,对其抗风性能进行研究。采用主梁节段模型风洞试验研究主梁的涡振性能和颤振性能,采用桥塔气弹模型风洞试验研究桥塔自立状态的驰振性能和涡振性能,采用ANSYS软件进行全桥有限元分析研究该桥的静风稳定性。结果表明:港珠澳大桥青州航道桥主梁原始断面和增加风嘴断面涡振性能不满足规范要求,在人行道栏杆上方增设抑流板后涡振性能满足要求;主梁原始断面和增加风嘴断面满足颤振稳定性要求,增加抑流板断面在+5°风攻角下的颤振稳定性不满足要求;桥塔的驰振性能满足要求;均匀流场和紊流场下,桥塔仅在风偏角较小时出现扭转涡振;各初始风攻角下,该桥的静风稳定临界风速均远大于静风失稳检验风速,静风稳定性满足规范要求。  相似文献   

10.
扁平箱梁已广泛应用于大跨度桥梁的主梁设计中,其颤振性能通常会借助物理和数值风洞的方法获得,测试周期长、费用高。尽管采用颤振计算公式可以简便计算扁平箱梁的颤振临界风速,但当前公式中未考虑扁平箱梁气动外形和来流攻角的具体影响,计算误差较大,无法用于实际工程设计。为了提升颤振计算公式中联合折减系数的准确度,利用节段模型风洞试验开展气动外形和风攻角对扁平箱梁颤振性能影响的研究。在分析各种气动构件和外形参数对扁平箱梁颤振性能的影响后,确定以斜腹板倾角和宽高比为气动外形变量,设计制作3组12个节段模型,分别在5个风攻角下测试了有栏杆扁平箱梁的颤振性能。在此基础上,根据节段模型风洞试验获得的颤振临界风速,结合弯扭耦合颤振闭合解计算公式,量化了气动外形和风攻角变化对扁平箱梁颤振的影响,给出不同条件下扁平箱梁颤振计算公式中的联合折减系数。最后,基于实际桥梁的颤振临界风速算例,验证利用联合折减系数计算颤振临界风速的准确性和适用性。研究结果表明:在0°风攻角和正风攻角下,当扁平箱梁的宽高比分别为11,9时,斜腹板倾角的减小有利于颤振临界风速提高,宽高比为7时,斜腹板倾角对颤振临界风速没有影响;在负风攻角下,3组宽高比模型斜腹板倾角的减小均会引起扁平箱梁颤振临界风速的降低;联合折减系数与扁平箱梁截面的颤振性能正相关,可直接反映其颤振性能,相对于目前《公路桥梁抗风设计规范》中扁平箱梁颤振临界风速计算时的固定折减系数,该系数能够具体和准确反映气动外形和风攻角对扁平箱梁颤振的影响,可以结合颤振计算公式快速、准确地计算出大跨度桥梁颤振临界风速。  相似文献   

11.
为寻找合理可行的颤振控制气动措施,使超千米跨径斜拉桥的颤振临界风速超过80m/s,以主跨1 400 m的钢箱梁斜拉桥设计方案为背景,通过节段模型风洞试验对中央稳定板、中央开槽、悬臂水平分离板、风嘴锐化等各种超千米斜拉桥颤振控制气动措施的效果进行了研究.研究表明:1.5 m悬臂水平分离板加40°锐化风嘴角的颤振控制组合气动措施,能够显著改善桥梁的颤振性能、实现颤振临界风速不低于80 m/s的目标;从颤振稳定性角度验证了1 400 m斜拉桥方案的可行性;超千米斜拉桥的颤振稳定性的富余度往往不高,设计必须考虑斜风效应的不利影响.  相似文献   

12.
为了解不同气动措施对人行悬索桥颤振稳定性的影响,以某460 m主跨人行悬索桥为例,通过节段模型风洞试验研究了稳定板、改变护栏透风率、增大主梁透风率等气动措施对颤振稳定性的影响.结果表明:1)增大主梁透风率能提高颤振稳定性能;2)封闭人行道护栏能起到类似上稳定板的作用,在模型背风侧添加稳定板能更好地抑制此攻角颤振发生,合...  相似文献   

13.
针对目前悬索桥加劲梁气动翼板颤振主动控制数值计算方法的局限性,提出采用流固耦合方法对加劲梁上部气动翼板的颤振控制进行分析。通过对Fluent软件二次开发,建立加劲梁-气动翼板系统流固耦合数值仿真计算模型,分析桥梁的颤振性能。以大贝尔特东桥为背景,采用流固耦合方法分析加劲梁上部设置气动翼板前、后该桥的颤振临界风速,研究气动翼板角速度对颤振临界风速的影响。结果表明:该桥颤振临界风速的数值仿真计算结果(72.0~74.0m/s)和节段模型风洞试验结果(70.0~72.9m/s)吻合较好;加劲梁上部设置气动翼板后,当前气动翼板与加劲梁扭转方向相反、后气动翼板与加劲梁扭转方向相同时,能显著提高加劲梁颤振临界风速;加劲梁最大扭转角随气动翼板角速度的增大逐渐减小。  相似文献   

14.
为了揭示主梁基本气动外形对悬索桥颤振性能的影响,以一座大跨悬索桥为例,分别选取流线型箱型、边箱型与分离式双箱型3种典型断面作为大桥主梁的基本气动外形。采用强迫振动法并基于CFD数值模拟获取各断面的气动参数,并采用阶跃函数法建立主梁的气动自激力时域模型;然后利用ANSYS平台进行全桥时域颤振有限元分析,得到各断面对应的颤振临界风速与颤振频率。结果表明:分离式双箱断面的颤振性能最佳,其颤振临界风速达到109.6 m/s,远高于其他2种断面;流线型断面与边箱型断面的颤振临界风速分别为89.4 m/s与86.9 m/s,两者的颤振性能相差不大;由频谱及相位分析可知,3种断面的颤振频率介于竖弯与扭转基频之间,颤振形式表现为不同程度的扭弯耦合振动。  相似文献   

15.
通过对计算流体力学商用软件FLUENT二次开发,建立了二维弯曲和扭转流固耦合数值仿真计算模型,研究6种钢箱梁桥梁方案的颤振稳定性:①整体钢箱梁;②~④不同中央开槽率的钢箱梁(开槽率分别为20%,40%和100%);⑤中央开槽与中央稳定板组合钢箱梁;⑥中央开槽与中央稳定板和水平稳定板组合钢箱梁。数值计算结果表明,对于颤振稳定性,中央开槽钢箱梁优于整体式钢箱梁;在假定主梁截面特性及桥梁自振频率不变的条件下,适当的开槽率可以使钢箱梁颤振临界风速达到最高;中央开槽与中央稳定板和水平稳定板组合钢箱梁可进一步提高桥梁颤振临界风速。数值仿真计算结果和风洞试验结果基本吻合。  相似文献   

16.
《公路》2020,(8)
结合樟树赣江二桥主桥400m主跨双塔斜拉桥,从设计师角度梳理了钢板组合梁斜拉桥主梁抗风设计的主要内容和工作流程,对该类型桥梁的抗风性能和抗风措施进行了说明,并利用规范方法对颤振和涡激共振相关参数进行计算。通过风洞试验,研究了原设计断面及设有气动措施断面的颤振和涡振性能,分析了裙板、水平导流板、风嘴、扰流板和下稳定板等单种或两种组合设置时的涡激共振减振效果,给出了扰流板和下稳定板联合使用的推荐方案。考虑到原设计断面在紊流场下抗风性能可满足规范要求,以及涡激共振发生风速比桥位处常遇风速高很多的特点,从合理性角度出发,设计中采取了预留抗风措施的对策。  相似文献   

17.
港珠澳大桥跨越崖13-1气田管线桥施工最大悬臂状态受静风荷载作用可能存在静风失稳问题,影响结构正常施工与安全性。为解决上述问题,首先采用静力三分力系数法分析该桥最大悬臂状态设计基准风速作用下的静风效应,明确主梁各断面水平、竖向和扭转位移在不同初始风攻角条件下的发展变化规律;其次,对该桥最大悬臂状态不同初始风攻角作用下的非线性静风稳定性进行分析,基于控制断面的风速-扭转角变化曲线明确结构扭转发散临界风速;最后根据非线性静风稳定性分析结果对该桥最大悬臂状态的静风稳定性进行分析评价。结果表明,在正攻角范围内(0°~5°),主梁横向位移与扭转角最大值分别为-1.47 mm与0.023°,负攻角范围内(-5°~0°),主梁横向位移与扭转角最大值分别为为0.25 mm与-0.007°,在不同初始风攻角作用下结构稳定系数介于1.53~2.58之间。不同初始攻角作用下结构的临界风速介于63~109.6 m·s-1之间,结构在负攻角范围内的临界风速计算值较正攻角高。  相似文献   

18.
韩富庆 《公路》2021,66(12):187-193
以某中承式钢拱桥为依托工程,针对分体式箱型主梁的抗风性能与气动外形进行优化研究.基于流体计算软件(CFD),计算主梁截面在-6°、-3°、0°、3°和6°风攻角下的阻力系数;同时,为改善主梁截面的气动外形,研究增加0.1H~0.25H的中央上稳定板、下稳定板、导流板和不同方案组合下主梁的抗风性能,结果表明:在-6°~3°风攻角范围内,随着中央上稳定板高度的增加,主梁截面的阻力系数随之增加;在3°~6°风攻角范围内,随着中央稳定高度的增加,主梁的阻力系数开始减小;在-6°~6°风攻角下,增设不同高度的下稳定板后,主梁阻力系数的变化趋势基本一致;同时,随着下稳定板高度的增加,主梁的阻力系数随之增加;增设导流板后主梁的阻力系数减小4.63%~19.75%;同时增设中央上稳定板和下稳定板不能有效降低主梁的阻力系数;同时增设导流板和上稳定板,主梁的阻力系数减小3.17%~88.59%;同时增设导流板和下稳定板,主梁的阻力系数减小2.64%~74.23%.  相似文献   

19.
大跨度悬索桥中央开槽箱梁断面的颤振性能   总被引:1,自引:0,他引:1  
以建成后将成为世界最大跨径的钢箱梁悬索桥——西堠门大桥为例,通过节段模型风洞试验、CFD数值模拟和理论计算对中央开槽箱梁断面的颤振稳定性能进行研究,分析了开槽宽度和箱梁内外侧局部气动外形的改变对中央开槽箱梁断面颤振稳定性能的影响。研究结果表明:开槽宽度对中央开槽箱梁断面的颤振稳定性能影响显著;箱梁内外侧局部气动外形的改变也会对结构颤振性能产生一定的影响,而且影响规律更为复杂。  相似文献   

20.
为提高钢-混叠合窄梁的抗风性能,以山区大跨窄梁悬索桥——紫坪铺特大桥为背景,采用节段模型风洞试验对其加劲梁气动稳定性及其抑振措施进行研究.风洞试验观察到加劲梁原始断面在负攻角下会发生驰振发散,基于此,采用节段模型动力试验对比了调整检修道位置、调整防撞护栏透风率、设置下稳定板、设置水平导流板等气动措施的驰振抑振效果,并进...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号