首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Lack of charging infrastructure is an important barrier to the growth of the plug-in electric vehicle (PEV) market. Public charging infrastructure has tangible and intangible value, such as reducing range anxiety or building confidence in the future of the PEV market. Quantifying the value of public charging infrastructure can inform analysis of investment decisions and can help predict the impact of charging infrastructure on future PEV sales. Estimates of willingness to pay (WTP) based on stated preference surveys are limited by consumers’ lack of familiarity with PEVs. As an alternative, we focus on quantifying the tangible value of public PEV chargers in terms of their ability to displace gasoline use for PHEVs and to enable additional electric (e−) vehicle miles for BEVs, thereby mitigating the limitations of shorter range and longer recharging time. Simulation studies provide data that can be used to quantify e-miles enabled by public chargers and the value of additional e-miles can be inferred from econometric estimates of WTP for increased vehicle range. Functions are synthesized that estimate the WTP for public charging infrastructure by plug-in hybrid and battery electric vehicles, conditional on vehicle range, annual vehicle travel, pre-existing charging infrastructure, energy prices, vehicle efficiency, and household income. A case study based on California’s public charging network in 2017 indicates that, to the purchaser of a new BEV with a 100-mile range and home recharging, existing public fast chargers are worth about $1500 for intraregional travel, and fast chargers along intercity routes are valued at over $6500.  相似文献   

2.
Widespread uptake of battery electric, plug-in hybrid, and hydrogen fuel-cell vehicles (collectively zero-emissions vehicles or ZEVs) could help many regions achieve deep greenhouse gas mitigation goals. Using the case of Canada, this study investigates the extent to which increasing ZEV charging and refuelling availability may boost ZEV sales relative to other ZEV-supportive policies. We adapt a version of the Respondent-based Preferences and Constraints (REPAC) model using 2017 survey data from 1884 Canadian new vehicle-buyers to simulate the sales impacts of increasing electric vehicle charging access at home, work, public destinations, and on highways, as well as increasing hydrogen refuelling station access. REPAC is built from a stated preference choice model and represents constraints in supply and consumer awareness, as well as dynamics in ZEV policy out to 2030. Results suggest that new ZEV market share from 2020 to 2030 does not substantially benefit from increased infrastructure. Even when electric charging and hydrogen refuelling access are simulated to reach “universally” available levels by 2030, ZEV sales do not rise by more than 1.5 percentage points above the baseline trajectory. On the other hand, REPAC simulates ZEV market share rising as high as 30% by 2030 with strong ZEV-supportive policies, even without the addition of charging or refuelling infrastructure. These findings stem from low consumer valuation of infrastructure found in the stated preference model. Results suggest that achieving ambitious ZEV sale targets requires a comprehensive suite of policies beyond a focus on charging and refueling infrastructure.  相似文献   

3.
This paper presents a literature review of studies that investigate infrastructure needs to support the market introduction of plug-in electric vehicles (PEVs). It focuses on literature relating to consumer preferences for charging infrastructure, and how consumers interact with and use this infrastructure. This includes studies that use questionnaire surveys, interviews, modelling, GPS data from vehicles, and data from electric vehicle charging equipment. These studies indicate that the most important location for PEV charging is at home, followed by work, and then public locations. Studies have found that more effort is needed to ensure consumers have easy access to PEV charging and that charging at home, work, or public locations should not be free of cost. Research indicates that PEV charging will not impact electricity grids on the short term, however charging may need to be managed when the vehicles are deployed in greater numbers. In some areas of study the literature is not sufficiently mature to draw any conclusions from. More research is especially needed to determine how much infrastructure is needed to support the roll out of PEVs. This paper ends with policy implications and suggests avenues of future research.  相似文献   

4.
We assess existing and potential charging infrastructure for plug-in vehicles in US households using data from the American Housing Survey and the Residential Energy Consumption Survey. We estimate that less than half of US vehicles have reliable access to a dedicated off-street parking space at an owned residence where charging infrastructure could be installed. Specifically, while approximately 79% households have off-street parking for at least some of their vehicles, only an estimated 56% of vehicles have a dedicated off-street parking space – and only 47% at an owned residence. Approximately 22% vehicles currently have access to a dedicated home parking space within reach of an outlet sufficient to recharge a small plug-in vehicle battery pack overnight. Access to faster charging, required for vehicles with longer electric range, will usually require infrastructure investment ranging from several hundred to several thousand dollars, depending on panel and construction requirements. We discuss sensitivity of results to uncertain factors and implications for the potential of mainstream penetration of plug-in vehicles.  相似文献   

5.
Public charging infrastructure represents a key success factor in the promotion of plug-in electric vehicles (PEV). Given that a large initial investment is required for the widespread adoption of PEV, many studies have addressed the location choice problem for charging infrastructure using a priori simple assumptions. Ideally, however, identifying optimal locations of charging stations necessitates an understanding of charging behavior. Limited market penetration of PEV makes it difficult to grasp any regularities in charging behavior. Using a Dutch data set about four-years of charging transactions, this study presents a detailed analysis of inter-charging times. Recognizing that PEV users may exhibit different charging behavior, this study estimates a latent class hazard duration model, which accommodates duration dependence, unobserved heterogeneity and the effects of time-varying covariates. PEV users are endogenously classified into regular and random users by treating charging regularity as a latent variable. The paper provides valuable insights into the dynamics of charging behavior at public charging stations, and which strategies can be successfully used to improve the performance of public charging infrastructure.  相似文献   

6.
This paper examines the charging behavior of 7,979 plug-in electric vehicle (PEV) owners in California. The study investigates where people charge be it at home, at work, or at public location, and the level of charging they use including level 1, level 2, or DC fast charging. While plug-in behavior can differ among PEV owners based on their travel patterns, preferences, and access to infrastructure studies often make generalizations about charging behavior. In this study, we explore differences in charging behavior among different types of PEV owners based on their use of charging locations and levels, we then identify factors associated with PEV owner’s choice of charging location and charging level. We identified socio-demographic (gender and age), vehicle characteristics, commute behavior, and workplace charging availability as significant factors related to the choice of charging location.  相似文献   

7.
This paper analyzes the potential demand for privately used alternative fuel vehicles using German stated preference discrete choice data. By applying a mixed logit model, we find that the most sensitive group for the adoption of alternative fuel vehicles embraces younger, well-educated, and environmentally aware car buyers, who have the possibility to plug-in their car at home, and undertake numerous urban trips. Moreover, many households are willing to pay considerable amounts for greater fuel economy and emission reduction, improved driving range and charging infrastructure, as well as for enjoying vehicle tax exemptions and free parking or bus lane access. The scenario results suggest that conventional vehicles will maintain their dominance in the market. Finally, an increase in the battery electric vehicles’ range to a level comparable with all other vehicles has the same impact as a multiple measures policy intervention package.  相似文献   

8.
By 2020, the vehicle population in China will likely exceed 280 million—exacerbating national energy security, urban air pollution, and traffic congestion. In response, many local and regional governments in China are pursuing an expanding array of measures to restrain growth in personal vehicle ownership and, along with the central government, reducing emissions and energy use of vehicles. One prominent strategy is the promotion of new energy vehicles, especially plug-in electric vehicles (PEVs). Large subsidies were offered—up to $27,600 (171,000 RMB) per vehicle in some regions, including almost $9200 (57,000 RMB) from the central government—which suggests that China is making a major commitment to PEVs. But sales have been meager. In 2013, only 17,600 PEVs, mostly buses and utility trucks, were sold, less than 0.1% of total civilian vehicle sales. Several factors explain the failure of PEV sales to take off: (1) protectionism by local governments; (2) uncertainty over which electric-drive vehicle technologies to promote and what consumers are willing to pay, (3) lagging investments in charging infrastructure, and (4) conservative investment behavior by automakers and battery manufacturers. The central government issued directives to local governments in late 2013 to reduce barriers to out-of-town companies, resulting in modest sales increases in early 2014, but a more coherent, broader, and effective set of policies, incentives, and strategies are needed to overcome consumer and industry resistance and the lack of charging infrastructure.  相似文献   

9.
High purchase prices and the lack of supporting infrastructure are major hurdles to the adoption of plug-in electric vehicles (PEVs). It is widely recognized that the government could help break these barriers through incentive policies, such as offering rebates to PEV buyers or funding charging stations. The objective of this paper is to propose a modeling framework that can optimize the design of such incentive policies. The proposed model characterizes the impact of the incentives on the dynamic evolution of PEV market penetration over a discrete set of time intervals, by integrating a simplified consumer vehicle choice model and a macroscopic travel and charging model. The optimization problem is formulated as a nonlinear and non-convex mathematical program and solved by a specialized steepest descent direction algorithm. We show that, under mild regularity conditions, the KKT conditions of the proposed model are necessary for local optimum. Results of numerical experiments indicate that the proposed algorithm is able to obtain satisfactory local optimal policies quickly. These optimal policies consistently outperform the alternative policies that mimic the state-of-the-practice by a large margin, in terms of both the total savings in social costs and the market share of PEVs. Importantly, the optimal policy always sets the investment priority on building charging stations. In contrast, providing purchase rebates, which is widely used in current practice, is found to be less effective.  相似文献   

10.
Policymakers often seek to increase the visibility of plug-in electric vehicle (PEV) chargers in public locations in effort to build familiarity and interest in PEVs. However, it is not clear if the visibility of public charging stations actually has an impact on PEV demand. The purposes of the present study are to (1) assess the current levels of visibility for public PEV charging infrastructure within Canada and (2) identify whether or not a statistically significant relationship exists between consumer awareness of public charging infrastructure and interest in purchasing a PEV. We use data collected from a sample of 1739 Canadian new-vehicle buyers in 2013. About 18% of Canadian respondents have seen at least one public charger, while the proportion is highest in British Columbia (31%). We find a significant bivariate relationship between public charger awareness and PEV interest. However, when controlling for multiple explanatory variables in regression analyses, the relationship is weak or non-existent. While perceived existence of at least one charger exhibits no significant relationship with PEV interest, perceived existence of multiple chargers can have a weak but significant relationship. Thus, public charger awareness is not a strong predictor of PEV interest; other variables are more important, such as the availability of level 1 (110/120-volt) charging at home.  相似文献   

11.
This paper proposes to optimally configure plug-in electric vehicle (PEV) charging infrastructure for supporting long-distance intercity travel using a general corridor model that aims to minimize a total system cost inclusive of infrastructure investment, battery cost and user cost. Compared to the previous work, the proposed model not only allows realistic patterns of origin–destination demands, but also considers flow-dependent charging delay induced by congestion at charging stations. With these extensions, the model is better suited to performing a sketchy design of charging infrastructure along highway corridors. The proposed model is formulated as a mixed integer program with nonlinear constraints and solved by a specialized metaheuristic algorithm based on Simulated Annealing. Our numerical experiments show that the metaheuristic produces satisfactory solutions in comparison with benchmark solutions obtained by a mainstream commercial solver, but is more computationally tractable for larger problems. Noteworthy findings from numerical results are: (1) ignoring queuing delay inducted by charging congestion could lead to suboptimal configuration of charging infrastructure, and its effect is expected to be more significant when the market share of PEVs rises; (2) in the absence of the battery cost, it is important to consider the trade-off between the costs of charging delay and the infrastructure; and (3) building long-range PEVs with the current generation of battery technology may not be cost effective from the societal point of view.  相似文献   

12.
This paper examines the role of public charging infrastructure in increasing the share of driving on electricity that plug-in hybrid electric vehicles might exhibit, thus reducing their gasoline consumption. Vehicle activity data obtained from a global positioning system tracked household travel survey in Austin, Texas, is used to estimate gasoline and electricity consumptions of plug-in hybrid electric vehicles. Drivers’ within-day recharging behavior, constrained by travel activities and public charger availability, is modeled. It is found that public charging offers greater fuel savings for hybrid electric vehicles s equipped with smaller batteries, by encouraging within-day recharge, and providing an extensive public charging service is expected to reduce plug-in hybrid electric vehicles gasoline consumption by more than 30% and energy cost by 10%, compared to the scenario of home charging only.  相似文献   

13.
This work uses market analysis and simulation to explore the potential impact of workplace and similarly convenient away-from-home charging infrastructure (CAFHCI) in reducing US light duty vehicle (LDV) petroleum use and greenhouse gas emissions. The ParaChoice model simulates the evolution of LDV sales, fuel use, and emissions through 2050, considering consumer responses to different options of electric range extension made available through CAFHCI, fraction of the population with access, and delay in infrastructure implementation. Results indicate that providing a greater fraction of the population access to CAFHCI at level 1 charging rates for a full workday (∼16–20 miles of range extension) may lead to more petroleum use reduction than providing level 2 charging to a lesser fraction. This result holds even considering the fraction of the population without at-home charging. 2050 battery electric vehicle sales increase 40% (85%) if the entire population is guaranteed daily access to one full workday of level 1 CAFHCI (half a workday of level 2, ∼80 miles of range extension). Plug-in hybrid sales increase when CAFHCI enables range extension below 20–40 miles/day, most significantly in households without at-home charging capability. Faster CAFHCI may decrease plug-in hybrid sales as less expensive BEVs become attractive to a greater fraction of the market.  相似文献   

14.
Ride-hailing is a clear initial market for autonomous electric vehicles (AEVs) because it features high vehicle utilization levels and strong incentive to cut down labor costs. An extensive and reliable network of recharging infrastructure is the prerequisite to launch a lucrative AEV ride-hailing fleet. Hence, it is necessary to estimate the charging infrastructure demands for an AEV fleet in advance. This study proposes a charging system planning framework for a shared-use AEV fleet providing ride-hailing services in urban area. We first adopt an agent-based simulation model, called BEAM, to describe the complex behaviors of both passengers and transportation systems in urban cities. BEAM simulates the driving, parking and charging behaviors of the AEV fleet with range constraints and identifies times and locations of their charging demands. Then, based on BEAM simulation outputs, we adopt a hybrid algorithm to site and size charging stations to satisfy the charging demands subject to quality of service requirements. Based on the proposed framework, we estimate the charging infrastructure demands and calculate the corresponding economics and carbon emission impacts of electrifying a ride-hailing AEV fleet in the San Francisco Bay Area. We also investigate the impacts of various AEV and charging system parameters, e.g., fleet size, vehicle battery capacity and rated power of chargers, on the ride-hailing system’s overall costs.  相似文献   

15.
Utility controlled-charging (UCC) of plug-in electric vehicles (PEVs) could potentially align vehicle charging with the availability of intermittent, renewable electricity sources. We investigated the case of a nightly charging program where the electric utility can control home PEV charging. To explore consumer acceptance of this form of UCC, we implemented a web-based survey of new vehicle buyers in Canada (n = 1470). The survey assessed interest in PEVs, explained UCC, and elicited openness to UCC through attitudinal questions and a stated choice experiment. We find potential for UCC support among one-half to two-thirds of respondents interested in purchasing a PEV, depending on the scenario. However, some respondents express concerns with privacy and loss of control. To quantify preferences for UCC, we estimated a latent class choice model where respondents chose between different PEV charging programs. The model identified four distinct respondent segments (or classes) that vary in their acceptance of UCC, as well as their valuation of renewable electricity, saving money on their electrical bill, and undergoing charging inconvenience. The overall sample was more sensitive to cost incentives than to renewable incentives, where cost-based UCC programs garnered 63–78% enrollment while renewable-based programs garnered only 49–59% enrollment. Overall, we observe the potential for widespread acceptance of UCC programs among Canadian PEV buyers, but program design and deployment will need to carefully acknowledge the various motivations and concerns of different vehicle buyer segments.  相似文献   

16.
Commercial passenger cars are a possible early market segment for plug-in electric vehicles (PEVs). Compared to privately owned vehicles, the commercial vehicle segment is characterized by higher mileage and a higher share of vehicle sales in Germany. To this point, there are only few studies which analyze the commercial passenger car sector and arrive at contradictory results due to insufficient driving profile data with an observation period of only one day. Here, we calculate the market potential of PEVs for the German commercial passenger car sector by determining the technical and economical potential for PEVs in 2020 from multi-day driving profiles. We find that commercial vehicles are better suited for PEVs than private ones since they show higher average annual mileage and drive more regularly. About 87% of the analyzed three-week vehicle profiles can technically be fulfilled by battery electric vehicles (BEVs) with an electric driving range of about 110 km while plug-in hybrid electric vehicles (PHEVs) with an electric range of 40 km could obtain an electric driving share of 60% on average. In moderate energy price scenarios, PEVs can reach a market share of 2–4% in the German commercial passenger car sales by 2020 and especially the large commercial branches (Trade, Manufacturing, Administrative services and Other services) are important. However, our analysis shows a high sensitivity of results to energy and battery prices as well as electric consumptions.  相似文献   

17.
The entry of various plug-in electric vehicles (PEVs) into the passenger vehicle sector provides novel opportunities to learn about the potential for future PEV markets. However, early PEV buyers (or “Pioneers”) can substantially differ from present conventional vehicle owners that have interest in purchasing PEVs in the future (or the “Potential Early Mainstream buyers”). To compare the characteristics, preferences, and motivations of Pioneers and Potential Early Mainstream buyers, we draw data from the Canadian Plug-in Electric Vehicle Study, a three-part mixed-mode survey with samples of PEV owners (n = 94) and conventional new vehicle buyers (n = 1754). We identify several significant differences in household characteristics, including income, education, and recharge access. In terms of preferences, Pioneers express extremely high valuation of PEVs and prefer pure battery electric vehicle (BEV) designs over plug-in hybrid electric (PHEV) designs. In contrast, Potential Early Mainstream respondents prefer PHEVs. Both Pioneer and Potential Early Mainstream respondents are similarly cautious about controlled charging programs, but Pioneers place five times as much value on using electricity generated from renewable sources than the Potential Early Mainstream. Pioneers also tend to have different motivations, including significantly higher levels of environmental concern, and higher engagement in environment- and technology-oriented lifestyles. Policymakers, automakers, and electric utilities that anticipate a transition to electric mobility ought to consider how potential future PEV buyers may differ in their vehicle preferences, usage and motivations relative to current PEV owners.  相似文献   

18.
The well-to-wheel emissions associated with plug-in electric vehicles (PEVs) depend on the source of electricity and the current non-vehicle demand on the grid, thus must be evaluated via an integrated systems approach. We present a network-based dispatch model for the California electricity grid consisting of interconnected sub-regions to evaluate the impact of growing PEV demand on the existing power grid infrastructure system and energy resources. This model, built on a linear optimization framework, simultaneously considers spatiality and temporal dynamics of energy demand and supply. It was successfully benchmarked against historical data, and used to determine the regional impacts of several PEV charging profiles on the current electricity network. Average electricity carbon intensities for PEV charging range from 244 to 391 gCO2e/kW h and marginal values range from 418 to 499 gCO2e/kW h.  相似文献   

19.
In this paper we present a mixed-integer linear program to represent the decision-making process for heterogeneous fleets selecting vehicles and allocating them on freight delivery routes to minimize total cost of ownership. This formulation is implemented to project alternative powertrain technology adoption and utilization trends for a set of line-haul fleets operating on a regional network. Alternative powertrain technologies include compressed (CNG) and liquefied natural gas (LNG) engines, hybrid electric diesel, battery electric (BE), and hydrogen fuel cell (HFC). Future policies, economic factors, and availability of fueling and charging infrastructure are input assumptions to the proposed modeling framework. Powertrain technology adoption, vehicle utilization, and resulting CO2 emissions predictions for a hypothetical, representative regional highway network are illustrated. A design of experiments (DOE) is used to quantify sensitivity of adoption outcomes to variation in vehicle performance parameters, fuel costs, economic incentives, and fueling and charging infrastructure considerations. Three mixed-adoption scenarios, including BE, HFC, and CNG vehicle market penetration, are identified by the DOE study that demonstrate the potential to reduce cumulative CO2 emissions by more than 25% throughout the period of study.  相似文献   

20.
This paper assesses the potential energy profile impacts of plug-in hybrid electric vehicles and estimates gasoline and electricity demand impacts for California of their adoption. The results are based on simulations replicating vehicle usage patterns reported in 1-day activity and travel diaries based on the 2000–2001 California Statewide Household Travel Survey. Four charging scenarios are examined. We find that circuit upgrades to 240 V not only bring faster charging times but also reduce charging time differences between PHEV20 and PHEV60; home charging can potentially service 40–50% of travel distances with electric power for PHEV20 and 70–80% for PHEV60; equipping public parking spaces with charging facilities, can potentially convert 60–70% of mileage from fuel to electricity for PHEV20, and 80–90% for PHEV60; and afternoons are found to be exposed to a higher level of emissions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号