首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
To accurately investigate vehicle emissions that have become major contributors to global air pollutants and greenhouse gases, test conditions have been transferred from laboratory type approval test cycles to real-world driving conditions. In this study, the real-world driving emissions of carbon monoxide (CO), total hydrocarbons (THC), nitrogen oxides (NOx), and carbon dioxide (CO2) from one gasoline and two diesel Euro 6b light-duty passenger vehicles were investigated by a portable emission measurement system (PEMS) in Lyon, France. NOx and CO2 emission controls remain critical to addressing the real-world driving emissions of Euro 6b vehicles. Notably, the tested gasoline vehicle emitted higher CO2 emissions than diesel vehicles on all types of roads, especially on the urban road with an excess of 29.3–48.3%. The highest emission factors of gaseous pollutants generally occurred on the motorway for the gasoline vehicle, while on the urban road for diesel vehicles. In particular, for high-speed driving conditions, the gasoline vehicle gaseous emissions, especially NOx emissions, were more affected by acceleration than diesel vehicle emissions. In addition, the CO emissions, especially THC emissions, for the gasoline vehicle, were more influenced by warm-start, especially cold-start, than those for diesel vehicles.  相似文献   

2.
This paper examines the influence of compressed natural gas, liquefied petroleum gas and gasoline fuel on the exhaust emissions and the fuel consumption of a spark-ignition engine powered passenger car. The vehicle was driven according to the urban driving cycle and extra urban driving cycle speed profiles with the warmed-up engine. Cause and effect based analysis reveals potential for using different fuels to reduce vehicle emission and deficiencies associated with particular fuels. The highest tank to wheel efficiency and the lowest CO2 emission are observed with the natural gas fuelled vehicle, that also featured the highest total hydrocarbon emissions and high NOx emissions because of fast three way catalytic converter aging due the use of the compressed natural gas. Retrofitted liquefied petroleum gas fuel supply systems feature the greatest air-fuel ratio variations that result in the lowest TtW efficiency and in the highest NOx emissions of the liquefied gas fuelled vehicle.  相似文献   

3.
Vehicle emissions estimates are needed at high spatial and temporal resolution to estimate near-roadway air quality and human exposures. The MOBILE6 emission factor model is based on transient test cycles of less than 65 mph. Correction factors for high speed and constant speed are developed based on vehicle-specific power-based modal models for light duty gasoline vehicles, using data from portable emission measurement systems. At 80 mph versus 65 mph, the estimated average emission rates are greater by 30%, 20%, 80%, and 10% for NOx, HC, CO, and CO2. The ratio of constant to average of transient speed emission rates range from 0.49 to 0.94 for NOx at speeds of 20 mph and 80 mph. The high speed and constant speed correction factors are applied to estimate vehicle emissions for a freeway segment that includes vehicle cruising speeds between 65 and 80 mph. The potential error for not accounting for constant speed operation on a short segment of highway could be 49% at moderate speed and 24% at high speed.  相似文献   

4.
This paper describes tailpipe emission results generated by the Vehicle Performance and Emissions Monitoring system (VPEMS). VPEMS integrates on‐board emissions and vehicle/driver performance measurements with positioning and communications technologies, to transmit a coherent spatio‐temporally referenced dataset to a central base station in near real time. These results focus on relationships between tailpipe emissions of CO, CO2, NOx and speed and acceleration. Emissions produced by different driving modes are also presented. Results are generally as one would expect, showing variation between vehicle speed, vehicle acceleration and emissions. Data is based upon a test run in central London on urban streets with speeds not exceeding about 65 km/h. The results presented demonstrate the capabilities of the system. Various issues remain with regard to validation of the data and expansion of the system capability to obtain additional vehicle performance data.  相似文献   

5.
CO, CO2, NOx and HC emissions of two stroke-powered tricycles in Metro Manila are examined using an instantaneous emissions model. Results show that fuel consumption and HC emissions in middle class residential areas and main roads are similar but lower than levels in low income residential areas. On the average, tricycles in Metro Manila consume 24.41 km/l of fuel and produces 9.5, 9.7, 40.5 and 0.07 g/km of HC, CO, CO2 and NOx, respectively. They fail to satisfy HC, CO and NOx emission limits set by reference standards in the Philippines and other Asian countries. They produce greater HC and CO emissions than gasoline fueled private cars and diesel powered public jeepneys, taxis and buses on a per passenger-km basis but significantly lower NOx emissions. Tricycles account for 15.4% of the total HC emissions from mobile sources in the metropolis while their contributions to CO, CO2 and NOx are minimal.  相似文献   

6.
The objective of the present study is the assessment of the environmental impact of a bivalent (bi-fuel) vehicle, running either on gasoline or compressed natural gas (CNG). To that aim, a Euro 6 passenger car was tested under various real-world driving conditions. In order to cover the full range of conventional powertrains currently in the market, the tests were also repeated on a Euro 6 diesel passenger car. Both cars were driven in two routes, the first complying with the regulation limits and the second going beyond them. Carbon monoxide (CO), nitrogen oxides (NOx) and particle number (PN) emissions were recorded using a Portable Emissions Measurement System (PEMS). Apart from the aggregated emission levels, in g/km, the exact emission location along the route was also assessed. Natural gas proved beneficial for CO and PN emissions, the level of which always remained below the respective legislation limits. On the other hand, under the dynamic driving conditions with gasoline, the relevant limits were exceeded. Cold start, occurring at the beginning of the urban part, and motorway driving were identified as major contributors to total emissions, especially in gasoline mode. However, the application of natural gas was associated with a penalty in NOx emissions, which were significantly increased as compared to gasoline. Local peaks within the urban part were identified in CNG mode. In any case, the diesel vehicle was by far the highest NOx emitter.  相似文献   

7.
NOX emission rates of 13 petrol and 3 diesel passenger cars as a function of average speed from 10 to 120 km/h, emission class (pre-Euro 1 – Euro 5), engine type were investigated by on-board monitoring on roads and highways of St. Petersburg using a portative Testo XXL 300 gas analyzer. The highest level of NOX emission 0.5–2.5 g/km was inherent to old pre-Euro 1 petrol cars without a catalytic converter. NOX emissions rates of Euro 1 and Euro 2 petrol cars changed within 0.15–0.9 g/km, Euro 3 – 0.015–0.27 g/km, Euro 4 – 0.013–0.1 g/km, Euro 5 – 0.002–0.043 g/km. Euro 3 – Euro 4 petrol cars generally satisfied corresponding NOX Emission Standards (ES), except cold-start period, Euro 5 petrol cars did not exceed ES. Warmed, stabilized engines of Euro 3 – Euro 5 petrol cars showed 5–10 times lower NOX emission rates than corresponding ES in the range of speed from 20 to 90 km/h. NOX emission rates of diesel Euro 3 and Euro 4 cars varied from 0.45 to 1.1 g/km and from 0.31 to 1.1 g/km, respectively. Two examined diesel Euro 3 and one Euro 4 passenger vehicles did not satisfy NOX ES at real use. Euro 3 diesel cars showed 28.9 times higher NOX emissions than Euro 3 petrol cars and Euro 4 diesel car demonstrated 17.6 times higher NOX emissions than Euro 4 petrol cars at warmed and stabilized engine at a cruise speed ranging from 30 to 60 km/h.  相似文献   

8.
Discrepancies between real-world use of vehicles and certification cycles are a known issue. This paper presents an analysis of vehicle fuel consumption and pollutant emissions of the European certification cycle (NEDC) and the proposed worldwide harmonized light vehicles test procedure (WLTP) Class 3 cycle using data collected on-road. Sixteen light duty vehicles equipped with different propulsion technologies (spark-ignition engine, compression-ignition engine, parallel hybrid and full hybrid) were monitored using a portable emission measurement system under real-world driving conditions. The on-road data obtained, combined with the Vehicle Specific Power (VSP) methodology, was used to recreate the dynamic conditions of the NEDC and WLTP Class 3 cycle. Individual vehicle certification values of fuel consumption, CO2, HC and NOx emissions were compared with test cycle estimates based on road measurements. The fuel consumption calculated from on-road data is, on average, 23.9% and 16.3% higher than certification values for the recreated NEDC and WLTP Class 3 cycle, respectively. Estimated HC emissions are lower in gasoline and hybrid vehicles than certification values. Diesel vehicles present higher estimated NOx emissions compared to current certification values (322% and 326% higher for NOx and 244% and 247% higher for HC + NOx for NEDC and WLTP Class 3 cycle, respectively).  相似文献   

9.
Innovative traffic management measures are needed to reduce transportation-related emissions. While in Europe, road lane management has focused mainly on introduction of bus lanes, the conversion to High Occupancy Vehicles (HOV) and eco-lanes (lanes dedicated to vehicles running on alternative fuels) has not been studied comprehensively. The objectives of this research are to: (1) Develop an integrated microscopic modeling platform calibrated with real world data to assess both traffic and emissions impacts of future Traffic Management Strategies (TMS) in an urban area; (2) Evaluate the introduction of HOV/eco-lanes in three different types of roads, freeway, arterial and urban routes, in an European medium-sized city and its effects in terms of emissions and traffic performance. The methodology consists of three distinct phases: (a) Traffic and road inventory data collection; (b) Traffic and emissions simulation using an integrated platform of microscopic simulation; and (c) Evaluation of scenarios. For the baseline scenario, the statistical analysis shows valid results. The results show that HOV and eco-lanes in a medium European city are feasible, and when the Average Occupancy of Vehicles (AOV) increases, on freeways, the majority of vehicles can reduce their travel time (2%) with a positive impact in terms of total emissions (−38% NOx, −39% HC, −43% CO and −37% CO2). On urban and arterial corridors, the reduction in emissions could be achieved only if the AOV increases from 1.50 to 1.70 passengers/vehicle. Total emissions of the corridor with an AOV of 1.70 passengers/vehicle can be reduced up to 35–36% for the urban route while the values can be reduced by 36–39% for the arterial road. With the introduction of Hybrid Electric Vehicles (HEV) and Electric Vehicles (EV) it is possible to reduce emissions, although the introduction of eco-lanes did not show significant reductions in emissions. When both policies are simulated together, an emissions improvement is observed for the arterial route and for two of the scenarios.  相似文献   

10.
In 2008 the regional government of Catalonia (Spain) reduced the maximum speed limit on several stretches of congested urban motorway in the Barcelona metropolitan area to 80 km/h, while in 2009 it introduced a variable speed system on other stretches of its metropolitan motorways. We use the differences-in-differences method, which enables a policy impact to be measured under specific conditions, to assess the impact of these policies on emissions of NOx and PM10. Empirical estimation indicate that reducing the speed limit to 80 km/h causes a 1.7–3.2% increase in NOx and 5.3–5.9% in PM10. By contrast, the variable speed policy reduced NOx and PM10 pollution by 7.7–17.1% and 14.5–17.3%. As such, a variable speed policy appears to be a more effective environmental policy than reducing the speed limit to a maximum of 80 km/h.  相似文献   

11.
The aim of this research is the implementation of a GPS-based modelling approach for improving the characterization of vehicle speed spatial variation within urban areas, and a comparison of the resulting emissions with a widely used approach to emission inventory compiling. The ultimate goal of this study is to evaluate and understand the importance of activity data for improving the road transport emission inventory in urban areas. For this purpose, three numerical tools, namely, (i) the microsimulation traffic model (VISSIM); (ii) the mesoscopic emissions model (TREM); and (iii) the air quality model (URBAIR), were linked and applied to a medium-sized European city (Aveiro, Portugal). As an alternative, traffic emissions based on a widely used approach are calculated by assuming a vehicle speed value according to driving mode. The detailed GPS-based modelling approach results in lower total road traffic emissions for the urban area (7.9, 5.4, 4.6 and 3.2% of the total PM10, NOx, CO and VOC daily emissions, respectively). Moreover, an important variation of emissions was observed for all pollutants when analysing the magnitude of the 5th and 95th percentile emission values for the entire urban area, ranging from −15 to 49% for CO, −14 to 31% for VOC, −19 to 46% for NOx and −22 to 52% for PM10. The proposed GPS-based approach reveals the benefits of addressing the spatial and temporal variability of the vehicle speed within urban areas in comparison with vehicle speed data aggregated by a driving mode, demonstrating its usefulness in quantifying and reducing the uncertainty of road transport inventories.  相似文献   

12.
Vehicle border crossings between Mexico and the United States generate significant amounts of air pollution, which can pose health threats to personnel at the ports of entry (POEs) as well as drivers, pedestrians, and local inhabitants. Although these health risks could be substantial, there is little previous work quantifying detailed emission profiles at POEs. Using the Mariposa POE in Nogales, Arizona as a case study, light-duty and heavy-duty vehicle emissions were analyzed with the objective of identifying effective emission reduction strategies such as inspection streamlining, physical infrastructure improvements, and fuel switching. Historical traffic information as well as field data were used to establish a simulation model of vehicle movement in VISSIM. Four simulation scenarios with varied congestion levels were considered to represent real-world seasonal changes in traffic volume. Four additional simulations captured varying levels of expedited processing procedures. The VISSIM output was analyzed using the EPA’s MOVES emission simulation software for conventional air pollutants. For the highest congestion scenario, which includes a 200% increase in vehicle volume, total emissions increase by around 460% for PM2.5 and NOx, and 540% for CO, SO2, GHGs, and NMHC over uncongested conditions for a two-hour period. Expedited processing and queue reduction can reduce emissions in this highest congestion scenario by as much as 16% for PM2.5, 18% for NOx, 20% for NMHC, 7% for SO2 and 15% for GHGs and CO. Other potential mitigation strategies examined include fleet upgrades, fuel switching, and fuel upgrades. Adoption of some or all of these changes would not only reduce emissions at the Mariposa POE, but would have air-quality benefits for nearby populations in both the US and Mexico. Fleet-level changes could have far-reaching improvements in air quality on both sides of the border.  相似文献   

13.
On-board real-time emission experiments were conducted on 78 light-duty vehicles in Bogota. Direct emissions of carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxides (NOx) and hydrocarbons (HC) were measured. The relationship between such emissions and vehicle specific power (VSP) was established. The experimental matrix included both gasoline-powered and retrofit dual fuel (gasoline–natural gas) vehicles. The results confirm that VSP is an appropriate metric to obtain correlations between driving patterns and air pollutant emissions. Ninety-five percent of the time vehicles in Bogota operate in a VSP between −15.2 and 17.7 kW ton−1, and 50% of the time they operate between −2.9 and 1.2 kW ton−1, representing low engine-load and near-idling conditions, respectively. When engines are subjected to higher loads, pollutant emissions increase significantly. This demonstrates the relevance of reviewing smog check programs and command-and-control measures in Latin America, which are widely based on static (i.e., idling) emissions testing. The effect of different driving patterns on the city’s emissions inventory was determined using VSP and numerical simulations. For example, improving vehicle flow and reducing sudden and frequent accelerations could curb annual emissions in Bogota by up to 12% for CO2, 13% for CO and HC, and 24% for NOx. This also represents possible fuel consumption savings of between 35 and 85 million gallons per year and total potential economic benefits of up to 1400 million dollars per year.  相似文献   

14.
In this study, diesel (JIS#2) and various biodiesel fuels (BDF20, BDF50, BDF100) are used to operate the diesel engine at 100 Nm, 200 Nm and full load; while the engine speed is 1800 rpm. The system is experimentally studied, and the energy, exergy, sustainability, thermoeconomic and exergoeconomic analyses are performed to the system. The Engine Exhaust Particle Sizer is used to measure the size distribution of engine exhaust particle emissions. Also, the data of the exhaust emissions, soot, particle numbers, fuel consumptions, etc. are measured. It is found that (i) most of the exhaust emissions (except NOx) are directly proportional to the engine load, (ii) maximum CO2 and NOx emissions rates are generally determined for the BDF100 biodiesel fuel; while the minimum ones are calculated for the JIS#2 diesel fuel. On the other hand, the maximum CO and HC emissions rates are generally computed for the JIS#2 diesel fuel; while the minimum ones are found for the BDF100 biodiesel fuel, (iii) fuel consumptions from maximum to minimum are BDF100 > BDF50 > BDF20 > JIS#2 at all of the engine loads, (iv) particle concentration of the JIS#2 diesel fuel is higher than the biodiesel fuels, (v) soot concentrations of the JIS#2, BDF20 and BDF50 fuels are directly proportional to the engine load; while the BDF100 is inversely proportional, (vi) system has better energy and exergy efficiency when the engine is operated with the biodiesel fuels (vii) sustainability of the fuels are BDF100 > BDF50 > BDF20 > JIS#2, (viii) thermoeconomic and exergoeconomic parameters rates from maximum to minimum are JIS#2 > BDF20 > BDF50 > BDF100.  相似文献   

15.
This paper examines the role of marine engine maintenance in reducing pollution. It tests four marine diesel engines, one constructed prior to January 1, 2000 and three after 2000. This paper explains how the condition of an engine’s nozzles and faulty injection pressure significantly influence NOx and CO emissions and describes both bench and onboard ship tests, on engines fitted with new or worn nozzles at different injection pressures. The tests showed that, when the engine constructed prior to 2000 operates under normal in-service conditions, the emissions are within limits, but, with a small fault in injection timing, the NOx emissions exceed the limits. For the engines constructed after 2000, a fault in the maintenance of the nozzles increases the CO emissions to a high level.  相似文献   

16.
This paper assesses the impacts of a targeted policy designed to influence car purchasing trends towards lower CO2 emitting vehicles. Vehicle registration tax and annual motor tax rates in Ireland changed in July 2008 from being based on engine size to emissions performance of cars. This paper provides a one year ex-post analysis of the first year of the tax change, tracking the change in purchasing trends arising from the measure related to specific CO2 emissions, engine size and fuel, and the implications for car prices, CO2 emissions abatement, and revenue gathered. While engine efficiency improvements had been offset by purchasing trends towards larger and generally less efficient cars in the past, with the average MJ/km remaining constant from 2000 to 2007, this analysis shows that in the first year of the new taxation system the average specific emissions of new cars fell by 13% to 145 g/km. This was brought about, not by a reduction in engine size, but rather through a significant shift to diesel cars. Despite an unexpected reduction in car sales due to a recession in 2008, the policy measure has had a larger than anticipated impact on CO2 emissions, calculated to be 5.9 ktCO2 in the first year of the measure. The strong price signal did however result in a 33% reduction in tax revenue from VRT, in financial terms amounting to a drop of €166 million compared to a baseline situation.  相似文献   

17.
Due to growing concerns about NOx and particulate matter (PM) emissions from diesel engines, stricter regulations are being introduced requiring advanced emission control technology. In response the diesel industry has begun testing various emission control technologies and applying them. To assess vehicle renewal policies of bus companies, two exhaust after-treatment technologies are compared: the combination of a diesel particulate filter and an exhaust gas re-circulation system and the combination of a selective catalytic reduction and urea. On-board emission measurements were conducted under real-world driving conditions on a specific bus route in the city of Madrid.  相似文献   

18.
Electric travelling appears to dominate the transport sector in the near future due to the needed transition from internal combustion vehicles (ICV) towards Electric Vehicles (EV) to tackle urban pollution. Given this trend, investigation of the EV drivers’ travel behaviour is of great importance to stakeholders including planners and policymakers, for example in order to locate charging stations. This research explores the Battery Electric Vehicle (BEV) drivers route choice and charging preferences through a Stated Preference (SP) survey. Collecting data from 505 EV drivers in the Netherlands, we report the results of estimating a Mixed Logit (ML) model for those choices. Respondents were requested to choose a route among six alternatives: freeways, arterial ways, and local streets with and without fast charging. Our findings suggest that the classic route attributes (travel time and travel cost), vehicle-related variables (state-of-charge at the origin and destination) and charging characteristics (availability of a slow charging point at the destination, fast charging duration, waiting time in the queue of a fast-charging station) can influence the BEV drivers route choice and charging behaviour significantly. When the state-of-charge (SOC) at the origin is high and a slow charger at the destination is available, routes without fast charging are likely to be preferred. Moreover, local streets (associated with slow speeds and less energy consumption) could be preferred if the SOC at the destination is expected to be low while arterial ways might be selected when a driver must recharge his/her car during the trip via fast charging.  相似文献   

19.
The heavy reliance on petroleum-derived fuels such as gasoline in the transportation sector is one of the major causes of environmental pollution. For this reason, there is a critical need to develop cleaner alternative fuels. Butanol is an alcohol with four different isomers that can be blended with gasoline to produce cleaner alternative fuels because of their favourable physicochemical properties compared to ethanol. This study examined the effect of butanol isomer-gasoline blends on the performance and emission characteristics of a spark ignition engine. The butanol isomers; n-butanol, sec-butanol, tert-butanol and isobutanol are mixed with pure gasoline at a volume fraction of 20 vol%, and the physicochemical properties of these blends are measured. Tests are conducted on a SI engine at full throttle condition within an engine speed range of 1000–5000 rpm. The results show that there is a significant increase in the engine torque, brake power, brake specific fuel consumption and CO2 emissions with respect to those for pure gasoline. The butanol isomers-gasoline blends give slightly higher brake thermal efficiency and exhaust gas temperature than pure gasoline at higher engine speeds. The iBu20 blend (20 vol% of isobutanol in gasoline) gives the highest engine torque, brake power and brake thermal efficiency among all of the blends tested in this study. The isobutanol and n-butanol blend results in the lowest CO and HC emissions, respectively. In addition, all of the butanol isomer-gasoline blends yield lower NO emissions except for the isobutanol-gasoline blend.  相似文献   

20.
Electric vehicles are often said to reduce carbon dioxide (CO2) emissions. However, the results of current comparisons with conventional vehicles are not always in favor of electric vehicles. We outline that this is not only due to the different assumptions in the time of charging and the country-specific electricity generation mix, but also due to the applied assessment method. We, therefore, discuss four assessment methods (average annual electricity mix, average time-dependent electricity mix, marginal electricity mix, and balancing zero emissions) and analyze the corresponding CO2 emissions for Germany in 2030 using an optimizing energy system model (PERSEUS-NET-TS). Furthermore, we distinguish between an uncontrolled (i.e. direct) charging and an optimized controlled charging strategy. For Germany, the different assessment methods lead to substantial discrepancies in CO2 emissions for 2030 ranging from no emissions to about 0.55 kg/kWhel (110 g/km). These emissions partly exceed the emissions from internal combustion engine vehicles. Furthermore, depending on the underlying power plant portfolio and the controlling objective, controlled charging might help to reduce CO2 emissions and relieve the electricity grid. We therefore recommend to support controlled charging, to develop consistent methodologies to address key factors affecting CO2 emissions by electric vehicles, and to implement efficient policy instruments which guarantee emission free mobility with electric vehicles agreed upon by researchers and policy makers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号